首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
We present a new batch-recursive estimator for tracking maneuvering targets from bearings-only measurements in clutter (i.e., for low signal-to-noise ratio (SNR) targets), Standard recursive estimators like the extended Kalman Iter (EKF) suffer from poor convergence and erratic behavior due to the lack of initial target range information, On the other hand, batch estimators cannot handle target maneuvers. In order to rectify these shortcomings, we combine the batch maximum likelihood-probabilistic data association (ML-PDA) estimator with the recursive interacting multiple model (IMM) estimator with probabilistic data association (PDA) to result in better track initialization as well as track maintenance results in the presence of clutter. It is also demonstrated how the batch-recursive estimator can be used for adaptive decisions for ownship maneuvers based on the target state estimation to enhance the target observability. The tracking algorithm is shown to be effective for targets with 8 dB SNR  相似文献   

2.
EM-ML algorithm for track initialization using possibly noninformative data   总被引:1,自引:0,他引:1  
Initializing and maintaining a track for a low observable (LO) (low SNR, low target detection probability and high false alarm rate) target can be very challenging because of the low information content of measurements. In addition, in some scenarios, target-originated measurements might not be present in many consecutive scans because of mispointing, target maneuvers, or erroneous preprocessing. That is, one might have a set of noninformative scans that could result in poor track initialization and maintenance. In this paper an algorithm based on the expectation-maximization (EM) algorithm combined with maximum likelihood (ML) estimation is presented for tracking slowly maneuvering targets in heavy clutter and possibly noninformative scans. The adaptive sliding-window EM-ML approach, which operates in batch mode, tries to reject or weight down noninformative scans using the Q-function in the M-step of the EM algorithm. It is shown that target features in the form of, for example, amplitude information (AI), can also be used to improve the estimates. In addition, performance bounds based on the supplemented EM (SEM) technique are also presented. The effectiveness of new algorithm is first demonstrated on a 78-frame long wave infrared (LWIR) data sequence consisting of an Fl Mirage fighter jet in heavy clutter. Previously, this scenario has been used as a benchmark for evaluating the performance of other track initialization algorithms. The new EM-ML estimator confirms the track by frame 20 while the ML-PDA (maximum likelihood estimator combined with probabilistic data association) algorithm, the IMM-MHT (interacting multiple model estimator combined with multiple hypothesis tracking) and the EVIM-PDA estimator previously required 28, 38, and 39 frames, respectively. The benefits of the new algorithm in terms of accuracy, early detection, and computational load are illustrated using simulated scenarios as well.  相似文献   

3.
We present the development and implementation of a multisensor-multitarget tracking algorithm for large scale air traffic surveillance based on interacting multiple model (IMM) state estimation combined with a 2-dimensional assignment for data association. The algorithm can be used to track a large number of targets from measurements obtained with a large number of radars. The use of the algorithm is illustrated on measurements obtained from 5 FAA radars, which are asynchronous, heterogeneous, and geographically distributed over a large area. Both secondary radar data (beacon returns from cooperative targets) as well as primary radar data (skin returns from noncooperative targets) are used. The target IDs from the beacon returns are not used in the data association. The surveillance region includes about 800 targets that exhibit different types of motion. The performance of an IMM estimator with linear motion models is compared with that of the Kalman filter (KF). A number of performance measures that can be used on real data without knowledge of the ground truth are presented for this purpose. It is shown that the IMM estimator performs better than the KF. The advantage of fusing multisensor data is quantified. It is also shown that the computational requirements in the multisensor case are lower than in single sensor case, Finally, an IMM estimator with a nonlinear motion model (coordinated turn) is shown to further improve the performance during the maneuvering periods over the IMM with linear models  相似文献   

4.
由于海上低空突防编队目标存在低检测和高机动的特点,采用传统跟踪算法对编队内目标逐个跟踪存在航迹连续性差、关联混乱等问题。针对上述问题,基于对编队群整体跟踪的思想,将交互式多模型(IMM)与Bayesian算法相结合,采用IMM-Bayesian算法完成典型机动场景下(拐弯、合并、分裂)海上低空编队群目标整体的跟踪,同时利用随机矩阵作为群的扩展状态完成对群形状信息的估计。其中,对海上低空突防编队群目标运动过程中出现的分裂与合并现象,在IMM-Bayesian算法的基础上采用最近邻分类的思想对其进行有效跟踪。仿真结果表明了算法的有效性。  相似文献   

5.
In this paper we present the design of a Variable Structure Interacting Multiple Model (VS-IMM) estimator for tracking groups of ground targets on constrained paths using Moving Target Indicator (MTI) reports obtained from an airborne sensor. The targets are moving along a highway, with varying obscuration due to changing terrain conditions. In addition, the roads can branch, merge or cross-the scenario represents target convoys along a realistic road network with junctions, changing terrains, etc. Some of the targets may also move in an open field. This constrained motion estimation problem is handled using an IMM estimator with varying mode sets depending on the topography, The number of models in the IMM estimator, their types and their parameters are modified adaptively, in real-time, based on the estimated position of the target and the corresponding road/visibility conditions. This topography-based variable structure mechanism eliminates the need for carrying all the possible models throughout the entire tracking period as in the standard IMM estimator, significantly improving performance and reducing computational load. Data association is handled using an assignment algorithm. The estimator is designed to handle a very large number of ground targets simultaneously. A simulated scenario consisting of over one hundred targets is used to illustrate the selection of design parameters and the operation of the tracker. Performance measures are presented to contrast the benefits of the VS-IMM estimator over the Kalman filter and the standard IMM estimator, The VS-IMM estimator is then combined with multidimensional assignment to gain “time-depth.” The additional benefit of using higher dimensional assignment algorithms for data association is also evaluated  相似文献   

6.
We present a new assignment-based algorithm for data association in tracking ground targets employing evasive move-stop-move maneuvers using ground moving target indicator (GMTI) reports obtained from an airborne sensor. To avoid detection by the GMTI sensor, the targets deliberately stop for some time before moving again. The sensor does not detect a target when the latter's radial velocity (along the line-of-sight from the sensor) falls below a certain minimum detectable velocity (MDV). Even in the absence of move-stop-move maneuvers, the detection has a less-than-unity probability (P/sub D/<1) due to obscuration and thresholding. Then, it is of interest, when a target is not detected, to develop a systematic technique that can distinguish between lack of detection due to P/sub D/<1 and lack of detection due to a stop (or a near stop). Previously, this problem was solved using a variable structure interacting multiple model (VS-IMM) estimator with a stopped target model (VS-IMM-ST) without explicitly addressing data association. We develop a novel "two-dummy" assignment approach for move-stop-move targets that considers both the problem of data association as well as filtering. Typically, in assignment-based data association a "dummy" measurement is used to denote the nondetection event. The use of the standard single-dummy assignment, which does not handle move-stop-move motion explicitly, can result in broken tracks. The new algorithm proposed here handles the evasive move-stop-move motion by introducing a second dummy measurement to represent nondetection due to the MDV. We also present a likelihood-ratio-based track deletion scheme for move-stop-move targets. Using this two-dummy data association algorithm, the track corresponding to a move-stop-move target is kept "alive' during missed detections both due to MDV and due to P/sub D/<1. In addition, one can obtain reductions in both rms estimation errors as well as the total number of track breakages.  相似文献   

7.
Linear Kalman filters, using fewer states than required to completely specify target maneuvers, are commonly used to track maneuvering targets. Such reduced state Kalman filters have also been used as component filters of interacting multiple model (IMM) estimators. These reduced state Kalman filters rely on white plant noise to compensate for not knowing the maneuver - they are not necessarily optimal reduced state estimators nor are they necessarily consistent. To be consistent, the state estimation and innovation covariances must include the actual errors during a maneuver. Blair and Bar-Shalom have shown an example where a linear Kalman filter used as an inconsistent reduced state estimator paradoxically yields worse errors with multisensor tracking than with single sensor tracking. We provide examples showing multiple facets of Kalman filter and IMM inconsistency when tracking maneuvering targets with single and multiple sensors. An optimal reduced state estimator derived in previous work resolves the consistency issues of linear Kalman filters and IMM estimators.  相似文献   

8.
Tracking in Clutter using IMM-IPDA?Based Algorithms   总被引:6,自引:0,他引:6  
We describe three single-scan probabilistic data association (PDA) based algorithms for tracking manoeuvering targets in clutter. These algorithms are derived by integrating the interacting multiple model (IMM) estimation algorithm with the PDA approximation. Each IMM model a posteriori state estimate probability density function (pdf) is approximated by a single Gaussian pdf. Each algorithm recursively updates the probability of target existence, in the manner of integrated PDA (IPDA). The probability of target existence is a track quality measure, which can be used for false track discrimination. The first algorithm presented, IMM-IPDA, is a single target tracking algorithm. Two multitarget tracking algorithms are also presented. The IMM-JIPDA algorithm calculates a posteriori probabilities of all measurement to track allocations, in the manner of the joint IPDA (JIPDA). The number of measurement to track allocations grows exponentially with the number of shared measurements and the number of tracks which share the measurements. Therefore, IMM-JIPDA can only be used in situations with a small number of crossing targets and low clutter measurement density. The linear multitarget IMM-IPDA (IMM-LMIPDA) is also a multitarget tracking algorithm, which achieves the multitarget capabilities by integrating linear multitarget (LM) method with IMM-IPDA. When updating one track using the LM method, the other tracks modulate the clutter measurement density and are subsequently ignored. In this fashion, LM achieves multitarget capabilities using the number of operations which are linear in the: number of measurements and the number of tracks, and can be used in complex scenarios, with dense clutter and a large number of targets.  相似文献   

9.
IMM estimator with out-of-sequence measurements   总被引:3,自引:0,他引:3  
In multisensor tracking systems that operate in a centralized information processing architecture, measurements from the same target obtained by different sensors can arrive at the processing center out of sequence. In order to avoid either a delay in the output or the need for reordering and reprocessing an entire sequence of measurements, such measurements have to be processed as out-of-sequence measurements (OOSMs). Recent work developed procedures for incorporating OOSMs into a Kalman filter (KF). Since the state of the art tracker for real (maneuvering) targets is the interacting multiple model (IMM) estimator, the algorithm for incorporating OOSMs into an IMM estimator is presented here. Both data association and estimation are considered. Simulation results are presented for two realistic problems using measurements from two airborne GMTI sensors. It is shown that the proposed algorithm for incorporating OOSMs into an IMM estimator yields practically the same performance as the reordering and in-sequence reprocessing of the measurements. Also, it is shown how the range rate from a GMTI sensor can be used as a linear velocity measurement in the tracking filter.  相似文献   

10.
The probabilistic multiple hypothesis tracker (PMHT) uses the expectation-maximization (EM) algorithm to solve the measurement-origin uncertainty problem. Here, we explore some of its variants for maneuvering targets and in particular discuss the multiple model PMHT. We apply this PMHT to the six "typical" tracking scenarios given in the second benchmark problem from W. D. Blair and G. A. Watson (1998). The manner in which the PMHT is used to track the targets and to manage radar allocation is discussed, and the results compared with those of the interacting multiple model probabilistic data association filter (IMM/PDAF) and IMM/MHT (multiple hypothesis tracker). The PMHT works well: its performance lies between those of the IMM/PDAF and IMM/MHT both in terms of tracking performance and computational load.  相似文献   

11.
Interacting multiple model tracking with target amplitude feature   总被引:5,自引:0,他引:5  
A recursive tracking algorithm is presented which uses the strength of target returns to improve track formation performance and track maintenance through target maneuvers in a cluttered environment. This technique combines the interacting multiple model (IMM) approach with a generalized probabilistic data association (PDA), which uses the measured return amplitude in conjunction with probabilistic models for the target and clutter returns. Key tracking decisions can be made automatically by assessing the probabilities of target models to provide rapid and accurate decisions for both true track acceptance and false track dismissal in track formation. It also provides the ability to accurately continue tracking through coordinated turn target maneuvers  相似文献   

12.
Interacting multiple model methods in target tracking: a survey   总被引:4,自引:0,他引:4  
The Interacting Multiple Model (IMM) estimator is a suboptimal hybrid filter that has been shown to be one of the most cost-effective hybrid state estimation schemes. The main feature of this algorithm is its ability to estimate the state of a dynamic system with several behavior modes which can “switch” from one to another. In particular, the IMM estimator can be a self-adjusting variable-bandwidth filter, which makes it natural for tracking maneuvering targets. The importance of this approach is that it is the best compromise available currently-between complexity and performance: its computational requirements are nearly linear in the size of the problem (number of models) while its performance is almost the same as that of an algorithm with quadratic complexity. The objective of this work is to survey and put in perspective the existing IMM methods for target tracking problems. Special attention is given to the assumptions underlying each algorithm and its applicability to various situations  相似文献   

13.
俞建国  刘梅  陈锦海 《航空学报》2011,32(10):1897-1904
多弹道目标跟踪伴随着速度快、密集程度高以及测量误差大等因素,在跟踪过程中发生航迹中断是一个很普遍的现象.在未知导弹任何先验信息前提下如何将中断前后的航迹片段进行关联,提高航迹的连续性已成为亟待解决的难题.针对该问题提出了一种实时的离散最优关联算法,它利用速度信息对中断前后弹道外推航迹进行粗关联;将对数似然函数作为关联代...  相似文献   

14.
Application of the Kalman-Levy Filter for Tracking Maneuvering Targets   总被引:3,自引:0,他引:3  
Among target tracking algorithms using Kalman filtering-like approaches, the standard assumptions are Gaussian process and measurement noise models. Based on these assumptions, the Kalman filter is widely used in single or multiple filter versions (e.g., in an interacting multiple model (IMM) estimator). The oversimplification resulting from the above assumptions can cause degradation in tracking performance. In this paper we explore the application of Kalman-Levy filter to handle maneuvering targets. This filter assumes a heavy-tailed noise distribution known as the Levy distribution. Due to the heavy-tailed nature of the assumed distribution, the Kalman-Levy filter is more effective in the presence of large errors that can occur, for example, due to the onset of acceleration or deceleration. However, for the same reason, the performance of the Kalman-Levy filter in the nonmaneuvering portion of track is worse than that of a Kalman filter. For this reason, an IMM with one Kalman and one Kalman-Levy module is developed here. Also, the superiority of the IMM with Kalman-Levy module over only Kalman-filter-based IMM for realistic maneuvers is shown by simulation results.  相似文献   

15.
IMMPDAF for radar management and tracking benchmark with ECM   总被引:2,自引:0,他引:2  
A framework is presented for controlling a phased array radar for tracking highly maneuvering targets in the presence of false alarms (FAs) and electronic countermeasures (ECMs). Algorithms are presented for track formation and maintenance; adaptive selection of target revisit interval, waveform and detection threshold; and neutralizing techniques for ECM, namely, against a standoff jammer (SOJ) and range gate pull off (RGPO). The interacting multiple model (IMM) estimator in combination with the probabilistic data association (PDA) technique is used for tracking. A constant false alarm rate (CFAR) approach is used to adaptively select the detection threshold and radar waveform, countering the effect of jammer-induced false measurements. The revisit interval is selected adaptively, based on the predicted angular innovation standard deviations. This tracker/radar-resource-allocator provides a complete solution to the benchmark problem for target tracking and radar control. Simulation results show an average sampling interval of about 2.5 s while maintaining a track loss less than the maximum allowed 4%  相似文献   

16.
针对机动目标跟踪中航迹信息提取精度不高的问题,提出一种ECEF坐标系下基于交互多模型的多机协同跟踪算法。首先,各载机以ECEF坐标系为融合中心对目标量测进行无偏转换处理,以有效减小量测转换误差对目标跟踪的影响;然后,利用交互多模型的方法对目标进行融合跟踪,以进一步提高目标机动时的跟踪精度;最后,通过二次滤波的方法,来有效实现目标航迹信息的精确提取。仿真结果表明,该算法可较好地提高目标机动时的跟踪精度和航迹信息提取精度。  相似文献   

17.
The paper considers the problem of tracking multiple maneuvering targets in the presence of clutter using switching multiple target motion models. A novel suboptimal filtering algorithm is developed by applying the basic interacting multiple model (IMM) approach and the joint probabilistic data association (JPDA) technique. Unlike the standard single-scan JPDA approach, the authors exploit a multiscan joint probabilistic data association (mscan-JPDA) approach to solve the data association problem. The algorithm is illustrated via a simulation example involving tracking of four maneuvering targets and a multiscan data window of length two  相似文献   

18.
The two-stage Kalman estimator has been studied for state estimation in the presence of random bias and applied to the tracking of maneuvering targets by treating the target acceleration as a bias vector. Since the target acceleration is considered a bias, the first stage contains a constant velocity motion model and estimates the target position and velocity, while the second stage estimates the target acceleration when a maneuver is detected, the acceleration estimate is used to correct the estimates of the first stage. The interacting acceleration compensation (IAC) algorithm is proposed to overcome the requirement of explicit maneuver detection of the two-stage estimator. The IAC algorithm is viewed as a two-stage estimator having two acceleration models: the zero acceleration of the constant velocity model and a constant acceleration model. The interacting multiple model (IMM) algorithm is used to compute the acceleration estimates that compensate the estimate of the constant velocity filter. Simulation results indicate the tracking performance of the IAC algorithm approaches that of a comparative IMM algorithm while requiring approximately 50% of the computations  相似文献   

19.
针对防空作战中的机动目标跟踪问题,分析了使用IMM算法跟踪目标所存在的缺陷,提出了一种基于期望系统噪声模型的自适应机动目标跟踪算法(MIMM),改变IMM算法使用固定模型集合的方法,IMM算法中作用权重较大的只是少部分更接近于实际系统的模型,通过对部分系统噪声模型进行自适应辨识,计算出最接近于系统实际噪声水平的模型——期望系统噪声模型(ESNM)。这些模型作为IMM多模型集的子集,是在一定模型框架内所寻求出的一个(或多个)最优模型(集)。仿真结果证明了MIMM算法能够更好地描述目标机动,达到更理想的跟踪性能,其跟踪精度优于使用固定模型集的IMM算法。  相似文献   

20.
A nonlinear IMM algorithm for maneuvering target tracking   总被引:1,自引:0,他引:1  
In target tracking, the measurement noise is usually assumed to be Gaussian. However, the Gaussian modeling of the noise may not be true. Noise can be non-Gaussian. The non-Gaussian noise arising in a radar system is known as glint noise. The distribution of glint noise is long tailed and will seriously affect the tracking performance. We develop a new algorithm that can effectively track a maneuvering target in the glint environment The algorithm incorporates the nonlinear Masreliez filter into the interactive multiple model (IMM) method. Simulations demonstrate the superiority of the new algorithm  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号