首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
跨声速轴流压气机近失速状态的间隙泄漏流流动特性   总被引:2,自引:2,他引:0  
为了研究间隙泄漏流以及泄漏涡自身的非定常性对轴流压气机的旋转失速的影响.对跨声速轴流压气机NASA转子37进行全三维定常、非定常的数值模拟,对比了最大效率和近失速工况的实验和数值模拟结果,定常计算所获得的总性能与试验结果符合良好.对于非定常计算,详细分析了NASA转子37近失速工况下流场结果,揭示了NASA转子37在近失速工况点,间隙泄漏流存在较明显的非定常性,这种非定常性表现为间隙泄漏流激波干涉引起间隙泄漏涡的周期性破碎.   相似文献   

2.
基于节流阀模型跨声速轴流压气机失速特性研究   总被引:2,自引:2,他引:0       下载免费PDF全文
为了研究跨声速轴流压气机失速特性,基于节流阀模型,对跨声速轴流压气机转子NASA Rotor 37进行了数值计算,得到了整个失速过程中的流场分布.结果表明,随着阀门进一步关小,压气机逐渐进入旋转失速,在失速发展过程中,失速团逐渐扩展至10% ~ 20%叶高,并绕着旋转轴以低于转子转速同方向旋转.  相似文献   

3.
跨声速轴流压气机失速边界预测方法   总被引:3,自引:0,他引:3  
研究了跨声速、单级设计压比为1.82的Stage 35轴流压气机与单级设计压比为2.05的Stage37轴流压气机在不同转速下的特性.在HARIKA原型程序基础上,改进了其叶排效率、落后角、理论能头计算模型,采用了两种轴流压气机失速边界的预测方法,第1种为HARIKA原型程序的分离流量预测方法,第2种为Koch所提出的失速静压升系数预测方法,所得特性计算结果与实验点吻合较好,Stage 35设计点效率的误差由原型的3.9%降低到改进后的1.5%,Stage 37设计点效率的误差由3.1%降低到1.9%.两种预测方法对失速边界流量的预测误差最小分别可达1.3%与1.6%,表明两种失速边界预测方法都是可行的.  相似文献   

4.
为了探索叶顶喷气在亚声速轴流压气机中的设计规律,试验研究了喷气量、喷嘴喉部高度、周向覆盖比例、喷气位置、喷嘴数目、喷嘴分布形式对压气机失速裕度的影响规律,分析了叶顶喷气的扩稳机理以及对压气机失速特性的影响,总结了叶顶喷气在亚声速和跨声速压气机中作用规律的异同。研究结果表明,叶顶喷气没有改变压气机的失速特性,其扩稳机理主要在于对叶顶堵塞的有效抑制,通道堵塞对叶顶喷气的非定常响应是离散叶顶喷气有效扩稳的重要原因。当喷嘴处于堵塞状态时扩稳效果达到最大,利用0.66%的喷气量可将压气机的失速裕度提升15%。对于压气机失速裕度的影响,喷气量、喷嘴喉部高度、喷气周向覆盖比例间存在交互作用,喷气位置、喷嘴周向分布形式和进气畸变对喷气扩稳效果的影响均不大。当压气机的失速均是由叶顶泄漏涡诱发的突尖失速时,叶顶喷气在亚声速压气机中的设计方法可用于指导跨声速压气机叶顶喷气的设计。  相似文献   

5.
跨声速轴流压气机特性预测的损失模型研究   总被引:1,自引:0,他引:1  
吴虎  孙娜  杨金广 《航空发动机》2007,33(4):8-11,29
基于公开发表的研究成果,完善了1种新的跨声速轴流压气机总压损失及落后角预测模型,并发展了相应的跨声速轴流压气机非设计性能分析方法,建立了相应的计算机模拟程序。对2个跨声速轴流压气机的设计及非设计性能进行了数值模拟,对所得计算结果与试验结果的比较表明,本模型与分析方法能够应用于工程计算。  相似文献   

6.
跨声速轴流压气机的失速发展机理   总被引:1,自引:0,他引:1  
为了研究跨声速轴流压气机由近失速工况发展为失速工况的动态演化机理,对跨声速轴流压气机转子NASA Rotor 37进行了多通道全三维数值模拟,着重分析了激波及前缘溢流对失速发展的影响。结果显示:在峰值效率工况下,叶片通道内存在一道斜激波;在失速工况下,斜激波演化为脱体激波。泄漏涡通过脱体激波后发生破碎,破碎的泄漏涡在向通道下游发展的过程中,受逆压梯度的影响,在通道中部形成一个明显的涡结构。在失速工况初期,由于泄漏涡的自维持现象,前缘溢流现象随着叶顶阻塞区的周期性发展而间歇性出现;随着流量的降低,通道阻塞程度逐渐增加,会出现前缘溢流一直存在的现象,这一特性可以作为流场开始急剧恶化的标志。  相似文献   

7.
跨声速压气机转子叶尖非定常流场数值研究   总被引:7,自引:4,他引:3  
付磊  宋西镇  袁巍  周盛  陆利蓬 《航空动力学报》2013,28(12):2821-2828
采用时间精确求解方法对某高负荷跨声速轴流压气机转子在98%设计转速下的叶尖非定常流场进行了数值研究.结果显示,激波自身振荡不明显,叶尖区域流动的非定常性主要来源于叶尖泄漏涡的破碎及其与激波之间的相互干涉.对比设计状态与失速状态下叶尖泄漏涡的特点发现:在近失速点时,叶尖区域间歇性出现前缘溢流.分析表明:叶尖泄漏涡在激波后破碎是造成堵塞的主要原因,也是造成spike型失速初始扰动的原因.   相似文献   

8.
以航空发动机稳定性评价体系中常用的插板实验为背景,分别进行低速、高亚声速、跨声速轴流压气机与插板畸变发生器的耦合数值仿真,研究插板畸变条件下压气机的流场特性以及不同类型压气机在插板畸变影响下的失速起始机制。研究发现:转子进口截面的周向流动是影响低速压气机稳定边界的主要因素;插板角涡对转子叶顶泄漏涡的扰动是影响高亚声速压气机稳定边界的重要原因;畸变气流影响下的叶片通道内激波强度和位置的变化是影响跨声速压气机稳定边界的关键因素。   相似文献   

9.
对涡旋流影响压气机转子性能和稳定性的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
屠宝锋  胡骏  张凯 《推进技术》2016,37(4):640-645
为研究对涡旋流影响跨声速轴流压气机性能和稳定性的机理,设计了一种叶片式旋流发生器,并对旋流发生器和跨声速单转子进行了联合数值模拟研究。计算结果表明旋流发生器叶片数越少,对涡强度越低;对涡旋流导致压气机总压比、峰值效率、稳定工作范围和堵塞边界流量减小,失速边界流量增大,对涡强度等于60°时峰值效率和堵塞边界流量分别降低1.11%和2.12%,失速边界流量增加4.17%;对涡中的同向涡导致叶尖进口攻角增加,进口相对马赫数减小;反向涡使叶尖进口攻角降低,进口相对马赫数增大;对涡前缘的轴向速度偏低,造成叶尖进口攻角大幅增加,叶尖泄漏流堵塞严重;由于叶尖泄漏流在叶片前缘溢流导致失稳。  相似文献   

10.
应用3维黏性流动计算软件Fine/Numeca,对某型1.5级跨声速轴流压气机进行内部流场和全工况特性数值模拟,得到该压气机特性曲线。在最高效率点和近失速点,在2种质量流量下,对压气机内部流场进行非定常对比计算,分析了在质量流量变小时,压气机内部流场的变化情况。  相似文献   

11.
以西北工业大学某亚声速轴流压气机孤立转子为研究对象,提出了较为可靠的数值模拟方法,进而采用NUMECA软件包中DESIGN/3D软件块,在峰值效率工况下对该转子机匣进行了轴对称造型优化,最终得到优化转子.优化转子在叶片前缘将叶顶间隙泄漏涡推离叶片吸力面,虽然该结果导致前30%轴向弦长间隙泄漏涡涡量及流动损失有一定程度增大,但是在后70%轴向弦长,优化转子间隙泄漏涡的涡量与流动损失比原始转子有了很大程度降低,从而使得全局损失降低,峰值点效率提高,出口绝对总压增加.优化转子的峰值点效率提升约为0.36%,大流量点效率增加更多,但是近失速点会更早地形成叶顶低速区从而诱发失速,使得优化转子比原始转子稳定裕度略有降低.   相似文献   

12.
为了揭示某轴流压气机转子近失速工况点叶尖区域流场的非定常变化及其形成机理,采用定常和非定常数值模拟方法对其内部流场进行了全三维的数值模拟。通过和已有的试验测量结果进行对比分析表明,预测的总性能及基元性能与试验结果取得了很好的一致性。近失速工况点的非定常模拟结果表明,压气机的总性能及叶片承受的扭矩出现了周期性的波动,其波动周期约为转子通过频率的2.5倍。进一步详细分析叶尖区流场的瞬态流动结构发现,间隙泄漏涡在近失速工况下出现了泡式破碎,破碎的泄漏涡、主流以及来自相邻叶片的间隙泄漏流相互作用形成了另外一个特征明显的旋涡(命名为叶尖二次涡)。该旋涡的形成、发展和运动是压气机的总性能出现周期性波动的主要原因。  相似文献   

13.
叶尖小翼对跨声速压气机转子变工况性能的影响   总被引:4,自引:1,他引:3  
为了进一步揭示叶尖小翼对跨声速压气机转子气动性能的影响机理,利用数值模拟方法研究了不同叶尖小翼安装方式对跨声速压气机转子气动性能的影响,并在分析跨声速压气机转子不同转速时的流动失稳机制的基础上探讨了叶尖小翼的扩稳机理.研究结果表明:最大宽度的压力面小翼在100%,80%及60%设计转速下分别使得跨声速压气机转子失速裕度增加8.1%,17.4%和7.1%.100%及80%设计转速时,转子叶尖区激波/叶尖泄漏涡干涉及泄漏涡破裂后产生的阻塞区是影响跨声速压气机转子内部流动失稳的关键因素.压力面小翼的扩稳机制在于降低了叶尖泄漏流强度,减弱了激波/叶尖泄漏涡干涉的强度,减小了叶尖泄漏涡破裂后产生的阻塞区.60%设计转速时,转子叶片吸力面气动过载导致的大面积的分离流动是诱发该跨声速压气机转子失稳的主要机制,此时压力面小翼的扩稳机制在于降低了转子叶尖来流的等效攻角,减弱了转子吸力面附面层三维分离的程度.   相似文献   

14.
为了揭示叶尖小翼对跨声速风扇转子气动性能的影响机理,采用数值模拟方法研究了跨声速风扇转子NASA Rotor 67附加不同叶尖小翼的气动特性,并在分析不同叶顶间隙时风扇转子失稳机制的基础上探究了叶尖小翼的扩稳机理。研究结果表明:最大宽度的压力面小翼在小间隙、设计间隙和大间隙情况下分别使风扇转子失速裕度提高32%,33.6%和70.6%。小间隙时,转子叶尖泄漏涡和叶片吸力面附面层分离是影响风扇转子失稳的关键因素,设计间隙和大间隙时,叶尖泄漏涡导致的大面积阻塞区是影响风扇转子失稳的关键。三种不同叶顶间隙情况下,压力面小翼的扩稳机制均在于有效降低了转子叶尖泄漏涡强度,减弱了叶尖泄漏涡导致的低轴向速度区流体的阻塞程度。  相似文献   

15.
为研究叶尖泄漏流对稳定性的影响,发展了一种叶尖泄漏涡模型,并且在由课题组开发的TUSIAC(three dimensional and unsteady stall inception analysis code)程序中实现。该程序将转/静子叶排模化为三维激盘,并在无叶区求解三维非定常欧拉方程,黏性的影响通过特性曲线体现,因此对计算资源的要求较低。数值模拟的结果表明:在叶尖间隙的影响下,压气机的性能和稳定裕度均有所下降。叶尖间隙不改变失速先兆的类型,但使得失速团旋转速度加快,周向尺寸减小。所发展的叶尖涡模型能够预测叶尖间隙尺寸对压气机稳定边界与失速起始过程的影响,从而为在设计初期考虑压气机的气动稳定性、并且优化压气机设计,提供了一种较为实用的方法。   相似文献   

16.
以斜流压气机串列转子为研究对象,运用CFD软件进行了数值模拟,获得了该压气机在100%和80%设计转速下S1流面流场、子午流场、阻塞工况及近失速工况的流场特性,为斜流压气机串列转子的设计和性能分析提供参考。研究结果表明:该斜流压气机在设计转速(69900 r/min)下超声速特性明显,特性曲线较陡峭;当转速小于80%设计转速时亚声速特性明显,特性曲线较平缓。随着转速的减小,压气机的稳定裕度逐渐增大。该斜流压气机串列转子叶根和叶中截面的损失主要来源于叶型尾缘的掺混损失和叶型吸力面的小范围激波损失;而叶尖截面的损失主要来源于叶型吸力面的大范围激波损失、激波与附面层的相互影响的损失和激波与叶尖泄漏流相互作用的损失。该斜流压气机进入近失速工况后,前排转子的激波强度进一步增大,并且叶间存在大范围低速区,造成流动损失进一步增大。  相似文献   

17.
为进一步提高低反力度压气机的稳定工作范围,以某三级低反力度高负荷压气机首级跨声速转子为研究对象,借助三维数值模拟方法,进行了叶顶喷气扩稳研究,分析讨论了叶顶喷气提升低反力度压气机转子稳定性的机理,并探讨了不同喷气轴向位置对扩稳效果及气动性能的影响。结果表明:叶顶喷气通过削弱叶顶泄漏涡和通道激波的相互作用,抑制了转子近失速工况下泄漏涡的破碎,消除了叶顶通道的大面积堵塞,拓宽了转子的稳定工作边界;随着喷嘴的位置从叶顶前缘处沿轴向上游移动,转子的失速裕度提升量呈现出先增大后减小的趋势,综合扩稳效果和对压气机总性能参数的影响,最佳喷气轴向位置为叶顶前缘上游转子5%叶顶轴向弦长处;叶顶喷气改变了转子气动参数的径向分布,降低了转子上15%叶高范围内的负荷,同时也使得其它叶高区域的负荷提升。  相似文献   

18.
高丽敏  李永增  刘晓东  张帅 《航空学报》2016,37(8):2614-2622
利用动态压力传感器对一低速轴流压气机转子的叶顶间隙流场进行详细的试验测量,通过对信号特征的分析,对压气机节流过程中叶顶间隙的非定常流动发展演变规律进行了研究。结果表明:压气机完全失速时,叶尖存在一以46.5%转子转速周向传播的失速团;节流过程中,叶尖前缘处的动态压力信号中存在非定常波动的特征频率带,其变化规律与叶顶流场压力非定常波动的能量迁移有关;随着压气机流量减小,叶顶泄漏流影响区域向前缘移动,失速团在叶顶前缘附近产生,并向尾缘方向扩展,最终覆盖叶片全部弦长;近失速工况时,叶顶间隙相邻通道内泄漏流相互作用,造成通道中的低压区“一前一后”交替分布从而形成一个空间上周期约2个叶片通道的扰动波。  相似文献   

19.
1引言风扇/压气机的气动失稳不但会对其气动性能造成恶劣影响,而且还有可能对发动机结构造成毁灭性的破坏。因此,如何延迟风扇/压气机气动失稳的发生,拓展稳定工作范围,一直是提高其性能的关键技术之一。机匣处理是一种扩大压气机稳定工作范围的有效措施,然而,大多数机匣处理在  相似文献   

20.
叶顶喷气对跨声转子近失速点流动的影响   总被引:2,自引:0,他引:2  
贾惟  刘火星 《航空动力学报》2011,26(12):2731-2740
利用数值模拟的方法研究了叶顶喷气对跨声转子性能及近失速点流动的影响.研究表明:在+65?的喷气角度下,喷气能保持效率不降低的同时使转子喘振裕度的绝对值提高4.48%.此外喷气还能改善转子叶片吸力面的流动,减弱叶尖泄漏涡的强度,同时使泄漏涡的轨迹更贴近叶片吸力面,这也是喘振裕度大幅提高的物理原因.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号