首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Beginning in 1990, the major automotive passenger vehicle manufacturers once again re-evaluated the potential of the battery powered electric vehicle (EV). This intensive effort to reduce the battery EV to commercial practice focused attention on the key issue of limited vehicle range, resulting from the low energy density and high mass characteristics of batteries, in comparison to the high energy density of liquid hydrocarbon (HC) fuels. Consequently, by 1995, vehicle manufacturers turned their attention to hybrid electric vehicles (HEV). This redirection of EV effort was highlighted finally in 1997, at the 57th Frankfurt Motor Show, the Audi Duo parallel type hybrid was released for the domestic market as a 1998 model vehicle. Also at the 1997 32nd Tokyo Motor Show, Toyota Hybrid System (THS) Prius was released for the domestic market as a production 1998 model vehicle. This paper presents a comparative analysis of the key features of these two 1998 model year production hybrid systems. Among the conclusions, two issues are evident: one, the major manufacturers have turned to the hybrid concept in their search for solutions to the key EV issues of limited range; and, heating/air conditioning; and two, the focus is now on introducing hybrid EV for test marketing domestically  相似文献   

2.
The Dependent Pressure Vessel (DPV) Nickel-Hydrogen (NiH2 ) design is being developed by Eagle-Picher Industries, Inc. (EPI) as an advanced battery for military and commercial, aerospace and terrestrial applications. The DPV cell design offers high specific energy and energy density as well as reduced cost, while retaining the established Individual Pressure Vessel (IPV) technology flight heritage and database. This advanced DPV design also offers a more efficient mechanical, electrical and thermal cell and battery configuration and a reduced parts count. The DPV battery design promotes compact, minimum volume packaging and weight efficiency, and delivers cost and weight savings with minimal design risks  相似文献   

3.
Historically, aircraft inertial navigation system (INS) batteries have utilized vented nickel-cadmium batteries for emergency DC power. The United States Navy and Air Force developed separate systems during their respective INS developments. The Navy contracted with Litton industries to produce the LTN-72 and Air Force contracted with Delco to produce the Carousel IV INS for the large cargo and specialty aircraft applications, over the years, a total of eight different battery national stock numbers (NSNs) have entered the stock system along with 75 battery spare part NSNs. The standard hardware acquisition and reliability program is working with the Aircraft Battery Group at Naval Surface Warfare Center Crane Division, Naval Air Systems Command (AIR 536), Wright Laboratory, Battelle Memorial Institute, and Concorde Battery Corporation to produce a standard INS battery. This paper discusses the approach taken to determine whether the battery should be replaced and to select the replacement chemistry. The paper also discusses the battery requirements, aircraft that the battery is compatible with, and status of Navy flight evaluation. Projected savings in avoided maintenance in Navy and Air Force INS systems is projected to be $14.7 million per year with a manpower reduction of 153 maintenance personnel. The new INS battery is compatible with commercially sold INS systems which represents 66% of the systems sold  相似文献   

4.
Nickel cadmium cells have almost doubled in capacity since 1980 after being stagnated in performance for twenty years. Nickel metal hydride cells, introduced in 1992, have shown a 170 percent increase in energy density to be competitive on a volume basis with lithium ion. Other characteristics, such as charge retention, charge rate, high temperature operation, and rate capability have also advanced with improvements in materials and constructions. These two cell types account for roughly one half of the value of the small secondary battery market  相似文献   

5.
This is an overview of the cryogenic refrigerator and cryogenic integration programs in development and characterization under the Cryogenic Technologies Group, Space Vehicles Directorate of the Air Force Research Laboratory (AFRL). The vision statement for the Air Force Research Laboratory Cryogenic Technologies Group is to support the space community as the center of excellence for developing and transitioning space cryogenic thermal management technologies. The primary customers for the AFRL cryogenic technology development programs are Ballistic Missile Defense Organization (BMDO), the USAF SBIRS (space based infrared) Low program office, and DoD space surveillance programs. This describes a variety of Stirling, pulse tube, Reverse Brayton, Joule-Thomson, and Sorption cycle cryocoolers currently under development to meet current and future Air Force and DoD requirements. The AFRL customer single stage cooling requirements at 10 K, 35 K, 60 K, 150 K, and multi-stage cooling requirements at 35/60 K are addressed. In order to meet these various requirements, the AFRL Cryogenic Technologies Group is pursuing various strategic cryocooler and cryogenic integration options. The Air Force Research Laboratory is also developing several advanced cryogenic integration technologies that will result in the reduction in current cryogenic system integration penalties and design time. These technologies include the continued development of the cryogenic systems integration model (CSIM), 60 K, and 100 K thermal storage units and heat pipes, cryogenic straps, thermal switches, and development of an integrated lightweight cryogenic bus (CRYOBUS).  相似文献   

6.
A 1984 survey of the nickel hydrogen (NiH2) battery industry is updated. Late 1980s and early 1990s issues are identified, and usage and testing results of the survey are summarized. NiH2 is the system of choice for new geosynchronous-earth-orbit (GEO) satellites and is being seriously considered for low-earth-orbit (LEO) applications. In five years, the annual cell production rate has doubled from approximately 1000 to 2000 cells. A number of cells under test have exceeded 20000 cycles at 40% DOD in LEO regimes, while other cells have achieved over 35 seasons in accelerated GEO regimes. The LEO database clearly indicates that NiH2 performance is at least as good as the best conventional nickel-cadmium performance demonstrated under test  相似文献   

7.
The fiber plaque technology used in the alkaline Ni-Cd battery system known as FNC (fiber nickel cadmium) is discussed. An advanced design called FNC-Recom, which contains additional fiber plates that are used as a recombination device for rapid oxygen consumption, is described. The FNC-Recom cell design is explained, and performance data and experiences with their use in electric vehicles are reported  相似文献   

8.
An update of validation test results confirming the advanced design nickel-hydrogen cell is presented. An advanced 125 Ah individual pressure vessel (IPV) nickel-hydrogen cell was designed for storing and delivering energy for long-term, low-earth-orbit (LEO) spacecraft missions. The new features of this design are: the use of 26% rather than 31% potassium hydroxide (KOH) electrolyte; a patented catalyzed wall wick; serrated-edge separators to facilitate gaseous oxygen and hydrogen flow within the cell, while maintaining physical contact with the wall wick for electrolyte management; and a floating rather than a fixed stack to accommodate nickel electrode expansion. The resulting improvements include extended cycle life and enhanced thermal, electrolyte, and oxygen management; and accommodation of nickel electrode expansion. Six 125-Ah flight cells based on this design are in the process of being evaluated in a LEO cycle life test  相似文献   

9.
Demands for portability have fueled significant developments in new battery technology. These developments have resulted in many more options in selecting the battery type for use in a particular project, but since most applications today are opting for rechargeable battery systems, the availability of battery charging solutions can become an equally important criteria in the selection process. Complicating this process are the demands for fast-but safe-charging with charge algorithms easily implemented with low-cost hardware. With the higher levels of complexity attendant with these more demanding algorithms, solutions have come primarily from the integrated circuit industry and the purpose of this paper is to provide a few examples of the latest efforts in this arena, specifically as addressed to lead-acid, nickel metal-hydride, and lithium-ion technologies  相似文献   

10.
Advanced communications, guidance and navigation systems play key roles in determining superiority of one combat aircraft over another. The use of advanced technology is essential to meeting the mission requirements of present as well as future aircraft. Modular avionics are being used in next generation aircraft, such as the Air Force F-22 fighter and the Army Comanche helicopter, as the means of achieving higher levels of performance, including reduced volume and improved adaptability, maintainability, and expandability. New system acquisitions such as Joint Strike Fighter will attempt to achieve these same performance levels but at dramatically reduced life cycle cost. Retrofit applications will also take on increasing roles in meeting this affordability need as the Department of Defense (DoD) struggles to maintain readiness in the face of the shrinking defense budget. The government is encouraging the use of open standards practices as a means of addressing the affordability issue. The Open Systems Joint Task Force (OS-JTF), formed in September 1994, is chartered to “sponsor and accelerate the adoption of open systems in weapons systems and subsystem electronics to reduce life-cycle costs and facilitate effective weapon system intra- and interoperability”. The purpose of this paper is to relate the concept of open systems to modular avionics. It discusses the key attributes of an open systems approach and identifies key technologies necessary for its success  相似文献   

11.
The status of the US Air Force Space Power Research and Development Program is summarized. Generic issues and requirements affecting the strategic planning of space power advances for the 1990s and beyond are described. The major thrusts of the Air Fore part of the Strategic Defense Initiative Office Space Power Program are highlighted, with emphasis on the ongoing advanced component technology development program. The status of these component technologies in the areas of power sources, energy storage, power management and distribution, and thermal management is described. Technology projections for the full range of envisioned technology options for the foregoing are used as the basis for a series of point designs for deriving the subsystem- and system-level benefits of the technologies. The primary focus is on baseload (CW) power systems operating in the range from 100 W for small satellites to 50 kW for potential large surveillance satellites. The secondary focus is on large, multimegawatt pulsed power systems and related components for potential applications such as directed energy. Potential `trump card' technologies related to energy conversion, storage, power electronics, and thermal management are identified  相似文献   

12.
Calculating the state of charge (SOC) of an electric vehicle (EV) battery is an inherently error prone process that depends on several variables. However, the accuracy of the required charge flow measurements can be greatly improved by using a voltage to frequency (V/F) converter in conjunction with a digital counter to integrate the measured battery current.  相似文献   

13.
An electric vehicle (EV) energy management system (EMS) developed to accurately predict and extend the usable driving range and the life of the battery pack is discussed. The EMS monitors and records battery state of charge, vehicle performance, power consumption of key components, and driver's actions. Convenient drive inputs in conjunction with memorized energy consumption profiles allow accurate prediction of driving range and selection of appropriate recharging profiles. EV range extension is accomplished by identifying inefficient use of energy, resulting in EMS modification of energy usage by offending subsystems or EMS suggestion to the driver of improved driving habits or vehicle use. Factors affecting the accuracy of range prediction and the amount of range extension are described  相似文献   

14.
《中国航空学报》2021,34(2):104-123
Plastic forming is one of enabling and fundamental technologies in advanced manufacturing chains. Design optimization is a critical way to improve the performance of the forming system, exploit the advantages of high productivity, high product quality, low production cost and short time to market and develop precise, accurate, green, and intelligent (smart) plastic forming technology. However, plastic forming is quite complicated, relating to multi-physics field coupling, multi-factor influence, multi-defect constraint, and triple nonlinear, etc., and the design optimization for plastic forming involves multi-objective, multi-parameter, multi-constraint, nonlinear, high-dimensionality, non-continuity, time-varying, and uncertainty, etc. Therefore, how to achieve accurate and efficient design optimization of products, equipment, tools/dies, and processing as well as materials characterization has always been the research frontier and focus in the field of engineering and manufacturing. In recent years, with the rapid development of computing science, data science and internet of things (IoT), the theories and technologies of design optimization have attracted more and more attention, and developed rapidly in forming process. Accordingly, this paper first introduced the framework of design optimization for plastic forming. Then, focusing on the key problems of design optimization, such as numerical model and optimization algorithm, this paper summarized the research progress on the development and application of the theories and technologies about design optimization in forming process, including deterministic and uncertain optimization. Moreover, the applicability of various modeling methods and optimization algorithms was elaborated in solving the design optimization problems of plastic forming. Finally, considering the development trends of forming technology, this paper discusses some challenges of design optimization that may need to be solved and faced in forming process.  相似文献   

15.
Over the last three years, Open System Avionics Architecture concepts have been addressed by the avionics community as a method for increasing affordability. The Naval Air Systems Command (Nav Air) led Advanced Avionics Architecture and Technology Review team of 1992, followed by the multiservice Avionics Engineering SubBoard (AESB) implementation phase team are two examples. The Perry memo and formation of the Open Systems Joint Task Force (OS-JTF) are further evidence of the importance placed on open systems at the DoD level. This paper summarizes these activities and their importance. Examples of the savings that can be expected by application of open systems are presented. Finally, significant on-going work along with critical technologies and concepts that need to be matured to make open systems successful are discussed  相似文献   

16.
许泽  许希武  曾宁  李秋龙 《航空学报》2006,27(3):436-439
进气道结构完整性评定是飞机结构平台研制关键技术,确保整个寿命期的飞机安全。介绍了先进歼击机进气道结构及载荷特点。研究了进气道结构完整性评定的两项关键技术:即基于结构几何非线性数值分析的结构总体和细节参数的确定技术和声疲劳试验件的设计及声载荷谱的制定技术。提出了技术解决方案并给出了成功应用实例。  相似文献   

17.
The San Antonio Air Logistics Center (SA-ALC) Automatic Test Systems Division's Advanced Diagnostics and Technology Insertion Center (ADTIC) is exploring the addition of a non-intrusive diagnostics capability to existing Automatic Test Systems (ATS) utilizing various sensor technologies. The diagnostic techniques under development are expected to allow for more efficient fault detection and isolation than traditional ATS. This paper summarizes findings to date and discusses the integration of these technologies should they prove viable  相似文献   

18.
A summary of the Hubble Space Telescope (HST) nickel-hydrogen (NiH/sub 2/) battery performance from launch to the present. Over the life of HST vehicle configuration, charge system degradation and failures, together with thermal design limitations, have had a significant effect on the capacity of HST batteries. Changes made to the charge system configuration to protect against power system failures and to maintain battery thermal stability resulted in undercharging of the batteries. This undercharging resulted in decreased usable battery capacity as well as battery cell voltage/capacity divergence. This cell divergence was made evident during on-orbit battery capacity measurements by a relatively shallow slope of the discharge curve following the discharge knee. Early efforts to improve battery performance have been successful. On-orbit capacity measurement data indicates increases in the usable battery capacity of all six batteries as well as improvements in the battery cell voltage/capacity divergence. Additional measures have been implemented to improve battery performance, however, failures within the HST Power Control Unit (PCU) have prevented verification of battery status.  相似文献   

19.
Major recent electric vehicle (EV) programs in North America, Europe, and Japan are reviewed. The developments discussed include electric vehicles for fleet operation and electric passenger cars for urban transit. All major auto makers have had their own concept electric vehicle programs, targeted at commercial production in the late 1990s. It Is noted that, with different objectives for various electric vehicles, considerations such as cost, reliability, efficiency, maintenance, durability, weight, size, and noise level should be compromised for the propulsion system design. Consequently, DC motor drives, induction motor drives, and permanent magnet brushless DC motor drives will continually be used for EV propulsion systems in the future, with DC drives being gradually replaced by AC drives. The rapid advances in power semiconductor devices and microprocessors have made it possible to build reliable and cost-effective AC drive systems  相似文献   

20.
It is recognized that wide applications of electric vehicles (EVs) will bring tremendous social, economical and ecological benefits. With the growing interests in electric vehicles, much effort is demanded for the development of efficient, reliable and economical AC drives' for EV propulsion purpose. Both induction motor (IM) drives and permanent magnet brushless DC motor (IM) drives have been applied to EVs. Switched reluctance motor (SRM) drives have been proposed as an alternative for EV propulsion. In order to assess the suitability of IM, BDCM and SRM drives for EV applications and to provide a technical support for the development and selection of future EV propulsion systems, the existing EV AC propulsion drives were compared, and a survey of experts' opinions was conducted. Comparison of the three AC drives was made on a relative and a quantitative basis using the survey questionnaires. According to the majority of the experts, induction motor drives are best suited for EV propulsion purpose, due to their low cost, high reliability, high speed, established converter and manufacturing technology, low torque ripple/noise and absence of position sensors. BDCM drives feature compactness, low weight and high efficiency and therefore provide an alternative for EV propulsion. The experts regard insulated gate bipolar transistors (IGBTs) as the most suited power semiconductor devices for AC drive converters at the present stage  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号