首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
I review the constraints placed on relativistic pulsar winds by comparing optical and X-ray images of the inner Crab Nebula on the one hand with two-dimensional MHD simulations on the other. The various proposals in the literature for achieving the low magnetisation required at the inner edge of the Nebula, are then discussed, emphasising that of dissipation in the striped-wind picture. The possibility of direct observation of the wind is examined. Based on the predicted orientation of the polarisation vector, I outline a new argument suggesting that the off-pulse component of the optical emission of the Crab pulsar originates in the wind.  相似文献   

2.
During 2004 and 2005 measurements of mesospheric/lower thermospheric (80–100 km) winds have been carried out in Germany using three different ground-based systems, namely a meteor radar (36.2 MHz) at the Collm Observatory (51.3°N, 13°E), a MF radar (3.18 MHz) at Juliusruh (54.6°N, 13.4°E) and the LF D1 measurements using a transmitter (177 kHz) at Zehlendorf near Berlin and receivers at Collm with the reflection point at 52.1°N, 13.2°E. This provides the possibility of comparing the results of different radar systems in nearly the same measuring volume. Meteor radar winds are generally stronger than the winds observed by MF and especially by LF radars. This difference is small near 80 km but increases with height. The difference between meteor radar and medium frequency radar winds is larger during winter than during summer, which might indicate an indirect influence of gravity waves on spaced antenna measurements.  相似文献   

3.
The diurnal variation of the mid-latitude upper thermosphere zonal winds during equinoxes has been studied using data recently generated from CHAMP measurements from 2002 to 2004 using an iterative algorithm. The wind data was separated into two geomagnetic activity levels, representing high geomagnetic activity level (Ap > 8) and low geomagnetic activity level (Ap ? 8). The data were further separated into two solar flux levels; with F10.7 > 140 for high and F10.7 ? 140 for low. Geomagnetic activity is a correlator just as significant as solar activity. The response of mid-latitude thermospheric zonal winds to increases in geomagnetic disturbances and solar flux is evident. With increase in geomagnetic activity, midday to midnight winds are generally less eastward and generally more westward after the about midnight transitions. The results show that east west transitions generally occurred about midnight hours for all the situations analyzed. The west to east transition occurs from 1400–1500 MLT. Enhanced westward averaged zonal wind speeds going above 150 ms−1 are observed in the north hemisphere mid-latitude about sunrise hours (∼0700–1100 MLT). Nighttime winds in the north hemisphere are in good agreement with previous single station ground observations over Millstone Hill. Improved ground observations and multi satellite observations from space will greatly improve temporal coverage of the Earth’s thermosphere.  相似文献   

4.
Winds obtained from geostationary satellites are compared with each other and with rawinsondes. These comparisons serve as a periodic quality check of satellite cloud motions (or winds) set up by the CGMS (Coordination for Geostationary Meteorological Satellites). Differences are taken between colocated cloud motions observed by adjacent satellites in areas of overlapping coverage (Type 1) and between colocated rawinsondes and cloud motions within the field of view of each individual satellite (Type 2).Among colocated satellite winds (Type 1) RMS vector difference of high clouds rarely exceed 10 mps and of low clouds, 6 mps. But, among colocated cloud and balloon vectors (Type 2), RMS vector differences are large. At high levels, differences range from 12 to 40 mps for GMS (Geostationary Meteorological Satellite) winds and from 10 to 18 mps for GOES (Geostationary Operational Environmental Satellite) winds. The greater disagreement of satellite winds with rawinsonde winds than with each other is attributed in large part to error in the assignment of cloud height especially in the presence of strong vertical shear and to a lesser extent on time differences between cloud and balloon measurements. Both Type 1 and 2 comparisons suffer from separations in distance (tolerated for purposes of establishing “colocation”) between cloud and balloon in the presence of strong horizontal shear. The discrepancy existing between GMS and GOES differences with rawinsondes is attributed primarily to differing techniques of height assignment.At low levels satellite winds departed from balloon winds by a RMS vector difference of about 6 to 9 mps which approached or exceeded the mean wind speed itself. This problem is attributed chiefly to the uncertainty of wind levels controlling the motion of the various low cloud types.  相似文献   

5.
A total of 146 meteorological rocket flights applying the ‘falling sphere’ technique are used to obtain horizontal winds in the mesosphere at polar latitudes, namely at the Andøya Rocket Range (69°N, 125 flights), at Spitsbergen (78°N, 10 flights), and at Rothera (68°S, 11 January flights only). Nearly all flights took place around noon or midnight, i.e., in the same phase of the semidiurnal tide. Meridional winds at 69°N show a clear diurnal tidal variation which is not observed in the zonal winds. The zonal wind climatology shows a transition from summer to winter conditions with the zero wind line propagating upward from 40 km (end of August) to 80 km (end of September). Zonal winds are smaller at Spitsbergen compared to Andøya which is in line with a common angular velocity at both stations. Meridional winds at noon are of similar magnitude at all three stations and are directed towards the north and south pole, respectively. Horizontal and meridional winds generally agree with empirical models, except for the zonal winds at Antarctica which are similar to the NH, whereas there is a significant SH/NH difference in CIRA-1986.  相似文献   

6.
Monthly variations of averaged nighttime thermospheric winds have been investigated over Abuja, Nigeria (Geographic: 9.06°N, 7.5°E; Geomagnetic: 1.60°S). The reports are based on Fabry-Perot interferometer measurements of Doppler shifts and Doppler broadening of the 630.0 nm spectral emission. The results were obtained during a period of weak solar activity with the solar flux (F10.7) typically below 70 solar flux units. Inspection of the average monthly thermospheric winds from October 2017 to December 2017 found December meridional winds to be more equatorward than the October and November winds. Zonal winds are eastward with pre-midnight maximum speeds going above 100 m/s. Compared to Jicamarca zonal winds in the Peruvian sector for the same month of October, the magnitude of maximum Abuja zonal wind speed is weaker. We compare the observed diurnal variation with the recently updated Horizontal wind model (HWM 14). Most of the observational features of thermospheric wind diurnal variation are captured in the model variation. The HWM14 generally showed good agreement with the Abuja October and November zonal wind observations but overestimates the December meridional winds. Expected longer period analysis of the results from Abuja will stimulate a better understanding of wind climatology over the West African sector.  相似文献   

7.
A two-fluid model is used to study the time evolution of stellar winds including the dynamical effect of cosmic rays. Neglecting the diffusion of cosmic rays, we seek self-similar solutions to spherically symmetric winds with a termination shock. The velocity upstream of the shock is taken to be zero. Physical solutions are those that can connect the shock to the star with the velocity approaching zero at the star. Two parameters govern the behaviour of the solutions, namely, the ratio of the upstream sound speed to the shock speed (in an inertial frame) and the gravitation potential of the central star. In some parameter regimes, no physical solution is possible.  相似文献   

8.
An evident signature of a least studied quasi-90-day oscillation is found in the winds and tides in the MLT from an equatorial station, São João do Cariri (7.4°S, 36.5°W). The oscillation is found to appear mainly in certain intervals with small but appreciable seasonal (fourth harmonic of annual oscillation) contribution. The maximum amplitude of the oscillation is found to be around 10 m/s in the zonal wind. The enhancement peak of the oscillation exhibits downward movement indicating a plausible role of upward moving waves/tides in carrying its imprint from below to the MLT. Similar oscillation feature in the tropospheric zonal wind and ozone may imply its lower atmospheric origin as a component of the intraseasonal oscillation (ISO) that moves upward by modulating the tides. Subsequently, the propagating tides (mainly semidiurnal) are enhanced by the ozone in the stratosphere through absorption of solar UV radiation and finally manifest the oscillation in the MLT. Consistency of the present findings with the past investigations are observed in some aspects of the oscillation, whereas existing mismatches in others are believed to be due to geophysical variability depending on space and time among various locations on the globe.  相似文献   

9.
Observations of the Sun show that magnetic flux is emerging through the surface in small scales in rather copious amounts. In order to maintain a steady state field strength, this flux must either be locally dissipated or explelled or both. We believe that magnetic reconnection and subsequent flux explusion is the most effective manner in which to achieve this. If new flux emerges into an already preexisting coronal magnetic field, the ambient field must be pushed aside to allow room for the new flux. If the ambient field strength decreases outward with radial distance as is expected for all stars, it may pinch off the emerging flux through magnetic reconnection and expell it outward. The net force on an isolated diamagnetic plasmoid produced by this process is shown to assume a particularly simple form, depending only on the plasmoid's mass, its temperature, and the radial gradient of the logarithm of the undisturbed magnetic pressure. If a sufficient number of these magnetic elements are produced per unit time, this process translates to a net outward magnetic force on the coronal plasma which can be greater that the gas pressure force. Thus, a stellar wind can be produced by magnetic forces alone without the need for a high coronal gas pressure — a mechanism which could be effective in explaining why stars, such as the late-type giants, which possess cool coronae nevertheless exhibit vigorous coronal expansions.  相似文献   

10.
Alfvén waves have been invoked as an important mechanism of particle acceleration in stellar winds of cool stars. After their identification in the solar wind they started to be studied in winds of stars located in different regions of the HR diagram. We discuss here some characteristics of these waves and we present a direct application in the acceleration of late-type stellar winds.  相似文献   

11.
Winds near the ground on Titan for the Dragonfly landing site (near Selk crater, 10°N) for the mid-2030s (Titan late southern summer, Ls ~ 310°) are estimated for mission design purposes. Prevailing winds due to the global circulation are typically 0.5 m/s, and do not exceed 1 m/s. Local terrain-induced flows such as slope winds appear to be similarly capped at 1 m/s. At various landing sites and times, these two contributions will vectorially combine to yield steady winds (for part of a Titan day, Tsol) of up to 2.0 m/s, but typically less – the slope wind component will be small in the mid-morning. In early afternoon, as on Earth and Mars, solar-driven convection in the planetary boundary layer will cause wind fluctuations of the order of 0.1 m/s, varying with a typical timescale of ~1000 s. Occasionally this convection organizes into coherent ‘dust devil’ vortices: detectable vortices with speeds of 1 m/s are predicted about once per Titan day. We have introduced the convective velocity scale combined with the advection time of PBL cells as a metric to derive the frequency of occurrence of gusts associated with convective vortices (‘dust devils’). Maximum possible vortex winds on Titan of 2.8 m/s may be expected only once per 40 Tsols, and define the maximum wind (4.8 m/s at 10 m height) that Dragonfly must tolerate without damage. The applicability of different wind combinations, scaled to the height of relevant Dragonfly components above the ground (e.g. the maximum corresponds to 3.9 m/s at 1.3 m height) by a logarithmic wind profile, to Dragonfly design and operations are discussed.  相似文献   

12.
A predictability of the stratospheric zonal winds above 38 km during the turnaround is an essential parameter for planning of the high-altitude scientific balloon flights. This information is more relevant in the case of Hyderabad balloon facility which is closer to equator and has much more unstable wind reversal patterns which appears to have changed enormously during the last decade probably in correlation with the global warming. With a majority of our flights reaching the altitudes of 38–42 km and the requirement of long float durations, a prior knowledge of wind pattern during the summer and winter turnaround seasons is highly desirable. Furthermore, the flight operation corridor for balloon flights from Hyderabad is limited to 400 km and though in the west direction there are flat lands, in all other three directions, the landscape is dotted by water bodies, reserve forests and hilly terrain, and therefore need of such a data is essential. In order to establish the climatology of the stratospheric winds and study their inter-annual variability over Hyderabad for the turnaround periods, we have made a detailed analysis of the United Kingdom Meteorological office data between 2000 and 2007, to derive average wind parameters (magnitude, direction) at different ceiling altitudes above 38 km. These results can be used only as general trend of stratospheric wind and should not be the limitation of the UKMO Data.  相似文献   

13.
Remote sensing measurements of the meridional thermospheric neutral wind using the Fabry-Perot Interferometer on Dynamics Explorer have been combined within-situ measurements of the zonal component using the Wind and Temperature Spectrometer on the same spacecraft. The two data sets with appropriate spatial phasing and averaging determine the vector wind along the track of the polar orbiting spacecraft. A study of fifty-eight passes over the Southern (sunlit) pole has enabled the average Universal Time dependence of the wind field to be determined for essentially a single solar local time cut. The results show the presence of a “back-ground” wind field driven by solar EUV heating upon which is superposed a circulating wind field driven by high latitude momentum and energy sources.  相似文献   

14.
In the last decade, high-resolution X-ray spectroscopy has revolutionized our understanding of the role of accretion disk winds in black hole X-ray binaries. Here I present a brief review of the state of wind studies in black hole X-ray binaries, focusing on recent arguments that disk winds are not only extremely massive, but also highly variable. I show how new and archival observations at high timing and spectral resolution continue to highlight the intricate links between the inner accretion flow, relativistic jets, and accretion disk winds. Finally, I discuss methods to infer the driving mechanisms of observed disk winds and their implications for connections between mass accretion and ejection processes.  相似文献   

15.
Electron density and neutral wind velocity measurements were carried out by rocketborne probes from rocket ranges in India. The experiments were carried out at the time of the onset of spread-F at sunset hours. The results show that a neutral wind velocity in north-south direction greater than 100 m/sec is required to trigger spread-F. It is suggested that spread-F is generated by the interaction of neutral gas with ionospheric plasma.  相似文献   

16.
A global array of 20 radio observatories was used to measure the three-dimensional position and velocity of the two meteorological balloons that were injected into the equatorial region of the Venus atmosphere by the VEGA spacecraft. Initial analysis of only radial velocities indicates that each balloon was blown westward about 11,500 kilometers (8000 kilometers on the night side) by zonal winds with a mean speed of about 70 meters per second. Excursions of the data from a model of constant zonal velocity are generally less than 3 meters per second; however, a much larger variation is evident near the end of the flight of the second balloon. Consistent systematic trends in the residuals for both balloons indicate the possibility of a solar-fixed atmospheric feature.  相似文献   

17.
Phase-resolved ROSAT observations of the soft X-ray flux from V444 Cygni confirm the orbital dependence of the flux suggested by analysis of IPC observations. The X-ray behavior suggests that a region of X-ray emitting gas exists between the 2 stars, probably produced by a collision between the WR and O star winds.  相似文献   

18.
This paper summarizes the dynamical information obtained in the lower thermosphere during the Energy Budget Campaign, by three experimental techniques: rocket-borne falling spheres instrumented with accelerometers and Tri-Methyl-Aluminium (TMA) trails, and from a ground-based Fabry-Perot interferometer. Winds of 200–400 m/sec, accelerated by the momentum and energy inputs from the magnetosphere, were observed during the ‘B’ and ‘A2’ salvos (15/16 Nov 1980 and 30 Nov/1 Dec resp.), with perturbations as low as 100 km altitude during the ‘B’ salvo. A global model has been used to simulate the wide-scale consequences of these disturbances, and to aid estimation of the integrated energy and momentum inputs.  相似文献   

19.
20.
Overlap of coverage of the five geostationary satellites has allowed an intercomparison of the FGGE cloud tracked winds. No attempt was made during FGGE to standardize the cloud tracking techniques. In spite of this potential for differences between data sets, the compatability of the various cloud wind data sets was generally quite good. The vector magnitude differences between nearly co-located vectors showed similar cumulative frequency statistics for all data producers. A study of systematic biases which could affect a global wind analysis of any given synoptic period showed that image alignment errors caused less than 2 m s?1 bias for all data producers except the NESS high level winds which had an average bias of slightly greater than 3 m s?1. This appears to be caused by the manual alignment of images in the movie loops. Height bias studies showed the Japanese winds to be higher than other data producers by as much as 100 mb for both the high and low levels winds. Height biases appear to be caused by the differences in cloud wind height assignment procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号