首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
地基光电观测在同步轨道目标监测领域具有重要作用.为评估单站光电设备对同步轨道目标的实际测定轨能力,利用上海天文台佘山站1.56m望远镜,采用CCD漂移扫描光电技术,对3颗北斗同步卫星开展试验观测,基于卫星精密星历评估目标的测定轨外符精度.结果表明:同步轨道目标的天文定位在方位和俯仰方向上的外符精度均好于0.3";在单圈次观测情况下,尽管轨道预报精度较低,约为数千米量级,但是观测弧段内定轨精度可优于百米;在多圈次观测情况下,轨道改进效果显著,定轨精度优于50m,外推至4d的轨道预报精度为百米量级.此外,定量评估了每晚不同观测时间跨度下同步轨道目标的测定轨精度,为单站光电设备实际应用提供了参考.   相似文献   

2.
Long-term photometric signature study of two GEO satellites   总被引:1,自引:0,他引:1  
Geostationary earth orbit satellites have been extensively used for unique high-orbit stationary characteristics. Long-term precise investigation is an important issue in the observation of GEO satellites, since it can provide valuable information on the satellites’ operation state, discrimination and early warning analysis. Ground-based optical-electronic devices play a significant role in the observation. 4-month photometric signature variation of two satellites is presented based on the successive observations using the 1.56-meter telescope of Shanghai Astronomical Observatory (SHAO). It can be concluded that the long-term brightness change mainly results from the sun declination angle and regular orbit maneuver. Moreover, the solar panel offsets of the two satellites are analyzed and found to be approximately 4 degrees. Estimation of photometric accuracy reaches 0.15 mag for the application of CCD drift-scan optical-electronic technique.  相似文献   

3.
由卫星的历表位置测定恒星位置   总被引:1,自引:0,他引:1       下载免费PDF全文
利用云南天文台1m望远镜上的1号CCD的SRT(分离读出技术)观测天王星卫星的资料,相对卫星的历表位置测定了暗恒星的位置,测定精度与目前国外天然卫星位置测定时的最好精度相当.  相似文献   

4.
In some space missions especially in the field of space gravitational wave detection, the telescope needs to point to a certain target through attitude movement and pointing control. In several mainstream gravitational wave detection missions, the detector usually consists of a cluster of three identical satellites, flying in a quasi-equilateral triangular formation with a big edge length, so every satellite needs two telescopes to point each other and constitute three giant Michelson-Type interferometers. Therefore, a satellite platform system with two telescopes is researched in this paper. This research helps to characterize the attitude motion of a telescope for space astronomical observation or space gravitational wave detection, provides new method on the telescope’s high-precision pointing control. For this purpose, we derive a satellite-telescope coupling attitude model, design the sliding mode controller for satellite and the stacked recurrent neural network adaptive controller for telescope. In the stacked recurrent neural network adaptive controller design, a sliding mode control technology is adopted. In addition, we propose a combinatorial optimization method for network weights in the stacked recurrent neural network training process, that is, the output layer is corrected by the adaptive law, and the correction of other layers adopt the error backpropagation method. Finally, a numerical simulation method verifies the effectiveness of the controller design.  相似文献   

5.
基于FocusGEO望远镜2017年12月至2019年6月的测光观测数据,开展台站上空地球同步轨道(GEO)目标光度曲线的分类研究.通过对GEO卫星光度曲线特征的统计分析,建立了一种全新的GEO卫星分类系统,确定了各类GEO卫星光度曲线的占比,分析了光度特征类别与卫星平台的相关性.本研究将197颗GEO卫星的光度曲线分...  相似文献   

6.
对X射线天文卫星观测需求进行了分析,提炼了观测任务对观测模式、源的高精度定位与对准、轨道、热控、测控数传等多项需求与约束;针对X射线观测的多需求、多约束难点,设计了集巡天观测、定点观测与小天区扫描观测于一体的观测模式,解决了一颗卫星同时实现全天扫描、银道面深度扫描、重要惯性区域扫描、重要及机遇目标深度观测以及伽马暴全天监测的多种观测需求的难题,该技术已在我国硬X射线调制望远镜卫星上得到应用.  相似文献   

7.
地球同步轨道上目标数量多,运动形式多样.为了保障航天活动的安全,有必要开展地球同步轨道目标的动态监测,及时掌握发生在中国专属地球同步轨道带的空间事件.2015年12月地球同步轨道带动态监视光学系统样机正式安装在中国丽江高美古观测站.2015年12月至2016年2月,利用该样机对台站上空地球同步轨道带的样本天区开展了试验观测.结果表明,样机能够对27颗地球同步轨道目标进行连续监测,其中两颗为北美航空航天司令部未编目的目标;目标天文定位的内符精度在方位上约为4",在俯仰上约为1".利用多圈次观测结果对轨道进行改进,在无轨控发生时,24h和48h点位预报精度在方位和俯仰上分别优于9"和2".以3颗GEO目标为例,通过实测资料对轨道变化事件进行了初步分析和验证.   相似文献   

8.
利用北斗GEO卫星观测数据直接计算电离层延迟。由于GEO卫星具有固定穿刺点和静地的特性,使得观测站监测电离层变化时可不考虑空间变化,并可进行连续不间断监测。通过分析北斗GEO卫星三种频率码伪距和载波相位观测值不同组合,选取B1&B2双频计算电离层延迟为最优组合,采用相位平滑伪距的方法计算电离层延迟TEC,相较其他电离层模型,该方法的优点是不会引入模型误差,可得到连续的高精度的电离层延迟监测结果。  相似文献   

9.
连线端站干涉测量(connected element interferometry,CEI)是高精度测角技术,在中高轨卫星、月球及深空航天器定轨定位中有良好的应用前景。基于CEI技术特点,提出了一种新的测量方法,即在相干测距模式下利用测距音和载波信号作为信号源进行连线端站干涉测量。构建了CEI试验系统对北斗GEO卫星进行观测,利用相干测距模式下的下行信号解算群时延、相时延。利用北斗GEO卫星精密星历计算的时延理论值,对北斗GEO卫星CEI群时延和相时延结果进行评估。结果表明,相干测距模式下CEI群时延和相时延残差均值分别为0.47ns、0.08ns,标准差(3σ)分别4.2ns、0.13ns。该项研究验证了相干测距模式下CEI相时延解算的可行性,可为共位地球同步卫星精密相对定位、月球探测器CEI测量提供技术参考。  相似文献   

10.
A joint team of researchers under the auspices of the Center for Space Debris Information Collection, Processing and Analysis of the Russian Academy of Sciences collaborates with 15 observatories around the world to perform observations of space debris. For this purpose, 14 telescopes were equipped with charge-coupled device (CCD) cameras, Global Positioning System (GPS) receivers, CCD frame processing and ephemeris computation software, with the support of the European and Russian grants. Many of the observation campaigns were carried out in collaboration with the Astronomical Institute of the University of Bern (AIUB) team operating at the Zimmerwald observatory and conducting research for the European Space Agency (ESA), using the Tenerife/Teide telescope for searching and tracking of unknown objects in the geostationary region (GEO). More than 130,000 measurements of space objects along a GEO arc of 340.9°, collected and processed at Space Debris Data Base in the Ballistic Center of the Keldysh Institute of Applied Mathematics (KIAM) in 2005–2006, allowed us to find 288 GEO objects that are absent in the public orbital databases and to determine their orbital elements. Methods of discovering and tracking small space debris fragments at high orbits were developed and tested. About 40 of 150 detected unknown objects of magnitudes 15–20.5 were tracked during many months. A series of dedicated 22-cm telescopes with large field of view for GEO survey tasks is in process of construction. 7 60-cm telescopes will be modernized in 2007.  相似文献   

11.
The MéO (for Métrologie Optique) telescope is the Satellite and Lunar Laser Ranging (SLR) dedicated telescope of Observatoire de la Côte d’Azur (France) located at plateau de Calern. The telescope uses an altazimuth mount. The motorization of the mount has a capability of 6 deg/s allowing the follow up of Low Earth Orbits (LEO) satellites, as well as Medium Earth Orbits (MEO) and geostationary (GEO) satellites, and the Moon. The telescope has a primary mirror of 1.54 m. It uses a Nasmyth focus equipped with an EMCCD camera. The telescope field of view, defined by the equivalent focal length and the size of the camera, is currently 3.4 arcmin × 3.4 arcmin.  相似文献   

12.
A universal on-orbit servicing system used in the geostationary orbit   总被引:1,自引:0,他引:1  
The geostationary orbit (GEO), a unique satellite orbit of the human beings, is a very precious orbit resource. However, the continuous increasing of GEO debris makes the GEO orbit more and more crowded. Moreover, the failures of GEO spacecrafts will result in large economic cost and other bad impacts. In this paper, we proposed a space robotic servicing system, and developed key pose (position and orientation) measurement and control algorithm. Firstly, the necessity of orbit service in GEO was analyzed. Then, a servicing concept for GEO non-cooperative targets was presented and a universal space robotic servicing system was designed. The system has a 2-DOF docking mechanism, a 7-DOF redundant manipulator and a set of stereo vision, in addition to the traditional subsystems of a spacecraft. This system can serve most existing satellites in GEO, not requiring specially designed objects for grappling and measuring on the target. The servicing contents include: (a) visual inspecting; (b) target tracking, approaching and docking; (c) ORUs (Orbital Replacement Units) replacement; (d) Malfunctioned mechanism deploying; (e) satellites life extension by taking over its control, or re-orbiting the abandoned satellites. As an example, the servicing mission of a malfunctioned GEO satellite with three severe mechanical failures was designed and simulated. The results showed the validity and flexibility of the proposed system.  相似文献   

13.
海洋监视卫星无源被动定位精度分析   总被引:7,自引:0,他引:7  
分析了利用三星编队卫星对海上目标进行无源侦察、监视的原理,建立了利用时差定位法进行定位的精度模型,在此基础上推导了卫星对目标的定位精度与卫星编队构型、轨道高度、与目标的相对位置及卫星定轨精度和测量误差的关系。对模型进行了仿真计算和分析,仿真结果表明:合理增加卫星间的基线长度,保持卫星编队构型及其与目标间相对位置的均匀性可以有效提高卫星对目标的定位精度。  相似文献   

14.
Under ESA contract an industrial consortium including Aboa Space Research Oy (ASRO), the Astronomical Institute of the University of Bern (AIUB), and the Dutch National Aerospace Laboratory (NLR), proposed the observation concept, developed a suitable sensor architecture, and assessed the performance of a space-based optical (SBO) telescope in 2005. The goal of the SBO study was to analyse how the existing knowledge gap in the space debris population in the millimetre and centimetre regime may be closed by means of a passive optical instrument. The SBO instrument was requested to provide statistical information on the space debris population in terms of number of objects and size distribution. The SBO instrument was considered to be a cost-efficient with 20 cm aperture and 6° field-of-view and having flexible integration requirements. It should be possible to integrate the SBO instrument easily as a secondary payload on satellites launched into low-Earth orbits (LEO), or into geostationary orbit (GEO). Thus the selected mission concept only allowed for fix-mounted telescopes, and the pointing direction could be requested freely. Since 2007 ESA focuses space surveillance and tracking activities in the Space Situational Awareness (SSA) preparatory program. Ground-based radars and optical telescopes are studied for the build-up and maintenance of a catalogue of objects. In this paper we analyse how the proposed SBO architecture could contribute to the space surveillance tasks survey and tracking. We assume that the SBO instrumentation is placed into a circular sun-synchronous orbit at 800 km altitude. We discuss the observation conditions of objects at higher altitude, and select an orbit close to the terminator plane. A pointing of the sensor orthogonal to the orbital plane with optimal elevation slightly in positive direction (0° and +5°) is found optimal for accessing the entire GEO regime within one day, implying a very good coverage of controlled objects in GEO, too. Simulations using ESA’s Program for Radar and Optical Observation Forecasting (PROOF) in the version 2005 and a GEO reference population extracted from DISCOS revealed that the proposed pointing scenario provides low phase angles together with low angular velocities of the objects crossing the field-of-view. Radiometric simulations show that the optimal exposure time is 1–2 s, and that spherical objects in GEO with a diameter of below 1 m can be detected. The GEO population can be covered under proper illumination nearly completely, but seasonal drops of the coverage are possible. Subsequent observations of objects are on average at least every 1.5 days, not exceeding 3 days at maximum. A single observation arc spans 3° to 5° on average. Using a simulation environment that connects PROOF to AIUB’s program system CelMech we verify the consistency of the initial orbit determination for five selected test objects on subsequent days as a function of realistic astrometric noise levels. The initial orbit determination is possible. We define requirements for a correlator process essential for catalogue build-up and maintenance. Each single observation should provide an astrometric accuracy of at least 1”–1.5” so that the initially determined orbits are consistent within a few hundred kilometres for the semi-major axis, 0.01 for the eccentricity, and 0.1° for the inclination.  相似文献   

15.
Recent anomalies exhibited by satellites and rocket bodies have highlighted that a population of faint debris exists at geosynchronous (GEO) altitudes, where there are no natural removal mechanisms. Despite previous optical surveys probing to around 10–20 cm in size, regular monitoring of faint sources at GEO is challenging, thus our knowledge remains sparse. It is essential that we continue to explore the faint debris population using large telescopes to better understand the risk posed to active GEO satellites. To this end, we present photometric results from a survey of the GEO region carried out with the 2.54 m Isaac Newton Telescope in La Palma, Canary Islands. We probe to 21st visual magnitude (around 10 cm, assuming Lambertian spheres with an albedo of 0.1), uncovering 129 orbital tracks with GEO-like motion across the eight nights of dark-grey time comprising the survey. The faint end of our brightness distribution continues to rise until the sensitivity limit of the sensor is reached, suggesting that the modal brightness could be even fainter. We uncover a number of faint, uncatalogued objects that show photometric signatures of rapid tumbling, many of which straddle the limiting magnitude of our survey over the course of a single exposure, posing a complex issue when estimating object size. This work presents the first instalment of DebrisWatch, an ongoing collaboration between the University of Warwick and the Defence Science and Technology Laboratory (UK) investigating the faint population of GEO debris.  相似文献   

16.
Beidou is the regional satellite navigation system in China, consisting of three kinds of orbiting satellites, MEO, GEO and IGSO, with the orbital altitudes of 21500–36000 km. For improving the accuracy of satellites orbit determination, calibrating microwave measuring techniques and providing better navigation service, all Beidou satellites are equipped with laser retro-reflector arrays (LRAs) to implement high precision laser ranging. The paper presents the design of LRAs for Beidou navigation satellites and the method of inclined installation of LRAs for GEO satellites to increase the effective reflective areas for the regional ground stations. By using the SLR system, the observations for Beidou satellites demonstrated a precision of centimeters. The performances of these LRAs on Beidou satellites are very excellent.  相似文献   

17.
摘要: 针对现有地基深空通信系统存在深空通信距离不够远、数传速率不够高等缺点,提出一种基于分布式协同控制的天基主动深空通信与太空射电望远镜功能一体系统.该系统部署在地球静止轨道上,由1颗馈源星、1颗中心星和4294颗小卫星(单元星)通过精密编队和在轨自主组装的方式构成,一体化集成天基主动深空通信功能和射电天文望远镜功能.该系统可以为深空探测器提供一个星地高速中转站,由于其部署在地球静止轨道,几乎不受大气云层影响,可以大幅度提升深空探测通信支持距离和数传速率,且能使射电天文望远镜的分辨率和灵敏度提升1~2个数量级.  相似文献   

18.
The problem of initial reduction of CCD observations of faint GEO objects is studied. Several difficulties and questions arising in connection with image processing for this kind of observations are mentioned. A natural way to apply the PSF fitting technique to line-shaped trails of stars or GEO objects is described and illustrated by its implementation in the Apex II astronomical image processing package. Logical filtering technique to improve the automatic object detection is proposed. These rather convenient and versatile methods can increase astrometric and, to a lesser degree, photometric accuracy of faint GEO object observations.  相似文献   

19.
混合星座导航卫星广播星历相关问题研究   总被引:3,自引:0,他引:3  
GPS卫星广播星历参数具有参数少、物理意义明确以及精度高等特点,可以考虑将它应用于包含MEO、IGSO和GEO卫星的混合星座卫星导航系统。分析了采用GPs卫星广播星历参数时MEO、IGSO和GEO卫星的广播星历拟合精度,并且比较分析了在一个卫星的轨道周期内,广播星历参数拟合结果的变化规律。仿真结果表明,MEO、IGSO和GEO卫星的广播星历拟合误差最大在分米量级;MEO和IGSO卫星在一个轨道周期内星历参数拟合结果的变化规律相近,但是与GEO卫星的差异较大。  相似文献   

20.
The presence of operational satellites or small-body space debris is a challenge for autonomous ground-based space object observation. Although most space objects exceeding 10?cm in diameter have been cataloged, the position of each space object (based on six orbital parameters) remains important and should be updated periodically, as the Earth’s orbital perturbations cause disturbances. Modern ground-based passive optical telescopes equipped with complementary metal-oxide semiconductors have become widely used in astrometry engineering, being combined with image processing techniques for target signal enhancement. However, the detection and tracking performance of this equipment when employed with image processing techniques primarily depends on the size and brightness of the space target, which appears on the monitor screen under variable background interference conditions. A small and dim target has a highly sensitive tracking error compared to a bright target. Moreover, most image processing techniques for target signal enhancement require large computational power and memory; therefore, automatic tracking of a space target is difficult. The present work investigates autonomous space target detection and tracking to achieve high-sensitivity detection and improved tracking ability for non-Gaussian and dynamic backgrounds with a simple system mechanism and computational efficiency. We develop an improved particle filter (PF) using the ensemble Kalman filter (KF) for track-before-detect (TBD) frameworks, by modifying and optimizing the computational formula for our non-linear measurement function. We call this extended version the “ensemble Kalman PF-TBD (EnKPF-TBD).” Three sequential astronomical image datasets taken by the Asia-Pacific Ground-Based Optical Space Objects Observation System (APOSOS) telescope under different conditions are used to evaluate three proposed TBD baseline frameworks. Given an optimal random sample size, the EnKPF-TBD exhibits superior performance to PF-TBD and threshold-based unscented KF with two-dimensional peak search (2dPS). The EnKPF-TBD scheme achieves satisfactory performance for all variable background interference conditions, especially for a small and dim space target, in terms of tracking accuracy and computational efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号