首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 15 毫秒
1.
空间飞船Helios 1和2的观测表明, 由0.3AU, 至1AU, 质子的磁矩Tp/B随日心距离增加而增加, 而纵向绝热不变量Tp∥B2/NP2则随日心距离增加而下降。这说明质子在垂直于行星际磁场方向上受到加热, 而在平行磁场的方向上受到冷却。以往没有理论能满意地解释上述现象, 本文在Alfvén脉动串级理论的基础上利用回旋波的准线性理论分析研究了串级能量转化为太阳风质子热能的机制, 解释了上述观测事实。   相似文献   

2.
本文讨论了被认为是可能存在的Alfvén脉动的粘性衰减效应.分析表明,Alfvén脉动的粘性衰减应是各向异性的,它正比于平行于平均磁场的脉动分量.若平行于与垂直于平均磁场方向的脉动能量之比为一常数,波长大于碰撞自由程的波动经历的粘性衰减都集中在20R以内.在0.3AU至1AU,各频率的Alfvén脉动将不经历显著的由库仑碰撞决定的粘性衰减.粘性衰减机制不能解释观测到的谱的径向变化.如果在接近太阳的空间,Alfvén脉动确有平行分量,那么它的粘性衰减将会对快发散流管中的太阳风有加速作用.如果在接近太阳的区域,Alfvén脉动的平行分量小得可以忽略的话,Alfvén脉动将不经受任何经典粘性衰减.   相似文献   

3.
本文由磁流体力学方程组导出了行星际空间中不可压缩小尺度脉动的控制方程组。对这一组方程的讨论表明,在小振幅极限下,脉动幅度的径向变化可由通常文献中引用的Alfvén波在缓变磁流体介质中传播的WKB解来描述。当脉动幅度与平均磁场强度之比为有限值时,在一般情况下,控制方程中的非线性项不能略去,因而不能用WKB解来描述有限振幅脉动幅度的径向变化。这一结论可以解释为什么在0.3—0.9AU实测Alfvén脉动振幅和谱的变化与WKB解不一致。在这组控制方程的基础上提出了一个定性的模式。将Alfvén脉动看作主要由许多具有不同波矢k的向外传播的有限振幅的Alfvén模式组成。它们在传播过程中将产生一级小量的波动。零级量与一级量的非线性相互作用使波能向高频区串级。零级量波动振幅的变化不仅受到太阳风慢变化的影响,而且受到这一非线性相互作用的影响。这一模式可以定性解释主要的Alfvén脉动的观测事实。   相似文献   

4.
激波在行星际介质中的能量耗散   总被引:1,自引:0,他引:1  
导出激波下游介质相对上游介质能流通量增量公式,并由HeliosA,B飞船太阳风观测资料得出不同流速太阳风流中各参量随日心距的幂律变化。以此作为背景值分别计算出磁能、内能、动能和总能在不同日心距离处的能量耗散率。结果指出激波后介质以动能增加为主,内能次之,磁能最少;总能耗率在近日处较大,但下降较快。从0.3-1.0AU,不同强度激波总能耗随初始Alfvén激波数A10增大而增大,对A10从2.0-10.0的计算结果与观测值一致。   相似文献   

5.
本文应用Helios飞船在0.3AU和1AU之间的高速太阳风质子和磁流涨落观测, 同时考察了包括各种可能的加速和加热效应的高速太阳风动量方程和质子能量方程.分析表明在碰撞为主的等离子体条件下导出的经典粘性系数表式明显地不适用于太阳风等离子体;在0.3AU和1AU之间主要加速力是热压梯度力和Alfven波压力, 背景磁场的洛伦兹力可忽略;在减速方面, 除了太阳重力外, 还需存在其它减速机制, 才能使太阳风动量平衡.看来唯有粘性能同时满足减速和加热这两种要求.   相似文献   

6.
根据动力论Alfven波耗散机制,详细计算了动力论Alfven波衰减的能量分配给质子和电子的比率.初步解释了高速太阳风中质子温度比电子温度高的事实,定性说明了r<10Rs时电子快速冷却的原因.   相似文献   

7.
从太阳风-磁层能量耦合的普遍表达式出发,用34天连续的太阳风观测资料对电磁耦合机制进行了数值检验.结果表明,只有当行星际磁场有南向分量的时候,电磁耦合机制才能近似表示太阳风-磁层能量耦合过程.此时,能量输入率可以表示成p=CBT2/3V5/3n1/3sin4(θ/2)这个函数与Akasofu能量耦合函数ε=VB2l02sin4(θ/2)有一定差别,但与Murayama和Hakamada,Svalgaard,Holzer和Slavin等人的结果一致.本文对影响能量耦合函数计算的几个问题从原始资料、处理方法及物理机制上进行了讨论.   相似文献   

8.
简单强磁云的结构特征   总被引:1,自引:1,他引:0  
本文讨论了1980年12月19日和3月19日两次无大型共转流相联系的行星际简单强磁云事件的磁流体动力学结构特征。此两磁云均以高温、高密度的湍流结构为先导,接着是低温、低密度,磁场很强且倾角单调旋转的磁云本体,后随另一密度稍高的结构。磁云本体内Alfvén波速及磁压对动能密度和热压的比值异常地增高,有利于磁云后的扰动迅速穿越磁云向前传播并向前边界集结。磁云边界上的巨大磁压梯度力及MHD波动在高密度结构内的耗散有可能对磁云前的太阳风进行加速和加热,形成双锯齿流速图象。简单磁云的结构很象典型的日冕质量抛射事件。此外,还简要地分析了磁云引起的地磁暴和宇宙线下降。   相似文献   

9.
本文利用南京大学太阳塔多波段光谱资料推求出的两个耀斑(一个SB级,一个2B级)的半经验模型;计算了耀斑不同时刻的辐射损失速率,并与电子束轰击和X线作用下的产能率作了比较.结果表明,耀斑不同时刻的色球辐射损失变化可达一个量级以上;耀斑脉冲相前后电子束轰击加热相当有效;耀斑强度极大时,电子束轰击和X线加热都有作用;耀斑主相时,X线加热更能有效地平衡辐射损失.但是,尤其是对大耀斑来说,色球低层和光球上层的加热既不能用电子束轰击,也不能用X线的作用来解释;可能存在某种把能量从色球上层向低层转移的机制.研究也表明,耀斑随时间变化的半经验模型为研究耀斑的能量耗散过程提供了很好的工具.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号