首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The auroral zone ionosphere is coupled to the outer magnetosphere by means of field-aligned currents. Parallel electric fields associated with these currents are now widely accepted to be responsible for the acceleration of auroral particles. This paper will review the theoretical concepts and models describing this coupling. The dynamics of auroral zone particles will be described, beginning with the adiabatic motions of particles in the converging geomagnetic field in the presence of parallel potential drops and then considering the modifications to these adiabatic trajectories due to wave-particle interactions. The formation of parallel electric fields can be viewed both from microscopic and macroscopic viewpoints. The presence of a current carrying plasma can give rise to plasma instabilities which in a weakly turbulent situation can affect the particle motions, giving rise to an effective resistivity in the plasma. Recent satellite observations, however, indicate that the parallel electric field is organized into discrete potential jumps, known as double layers. From a macroscopic viewpoint, the response of the particles to a parallel potential drop leads to an approximately linear relationship between the current density and the potential drop.The currents flowing in the auroral circuit must close in the ionosphere. To a first approximation, the ionospheric conductivity can be considered to be constant, and in this case combining the ionospheric Ohm's Law with the linear current-voltage relation for parallel currents leads to an outer scale length, above which electric fields can map down to the ionosphere and below which parallel electric fields become important. The effects of particle precipitation make the picture more complex, leading to enhanced ionization in upward current regions and to the possibility of feedback interactions with the magnetosphere.Determining adiabatic particle orbits in steady-state electric and magnetic fields can be used to determine the self-consistent particle and field distributions on auroral field lines. However, it is difficult to pursue this approach when the fields are varying with time. Magnetohydrodynamic (MHD) models deal with these time-dependent situations by treating the particles as a fluid. This class of model, however, cannot treat kinetic effects in detail. Such effects can in some cases be modeled by effective transport coefficients inserted into the MHD equations. Intrinsically time-dependent processes such as the development of magnetic micropulsations and the response of the magnetosphere to ionospheric fluctuations can be readily treated in this framework.The response of the lower altitude auroral zone depends in part on how the system is driven. Currents are generated in the outer parts of the magnetosphere as a result of the plasma convection. The dynamics of this region is in turn affected by the coupling to the ionosphere. Since dissipation rates are very low in the outer magnetosphere, the convection may become turbulent, implying that nonlinear effects such as spectral transfer of energy to different scales become important. MHD turbulence theory, modified by the ionospheric coupling, can describe the dynamics of the boundary-layer region. Turbulent MHD fluids can give rise to the generation of field-aligned currents through the so-called -effect, which is utilized in the theory of the generation of the Earth's magnetic field. It is suggested that similar processes acting in the boundary-layer plasma may be ultimately responsible for the generation of auroral currents.  相似文献   

2.
In this paper some theories and experimental data on the electric fields and currents in the ionosphere are reviewed. Electric fields originating in the polarization of the ionosphere as well as in local irregularities are considered. Special attention is paid to field-aligned currents as a regulator of the intensity and configuration of the ionospheric polarization field, the anomalous resistivity being one of the most important characteristics of the magnetospheric plasma. Present-day models of the magnetosphere and corresponding electric field generation mechanisms are discussed. Various models of the DP1 current system are considered and the main characteristics that allow us to distinguish between them are listed. Experimental data on the ionospheric electric field are considered; a modified model of Silsbee and Vestine is shown to fit these data reasonably well.  相似文献   

3.
The low latitude ionosphere is strongly affected by several highly variable electrodynamic processes. Over the last two decades ground-based and satellite measurements and global numerical models have been extensively used to study the longitude-dependent climatology of low latitude electric fields and currents. These electrodynamic processes and their ionospheric effects exhibit large ranges of temporal and spatial variations during both geomagnetic quiet and disturbed conditions. Numerous recent studies have investigated the short term response of equatorial electric fields and currents to lower atmospheric transport processes and solar wind-magnetosphere driving mechanisms. This includes the large electric field and current perturbations associated with arctic sudden stratospheric warming events during geomagnetic quiet times and highly variable storm time prompt penetration and ionospheric disturbance dynamo effects. In this review, we initially describe recent experimental and numerical modeling results of the global climatology and short term variability of quiet time low latitude electrodynamic plasma drifts. Then, we examine the present understanding of equatorial electric field and current perturbation fields during periods of enhanced geomagnetic activity.  相似文献   

4.
Three types of processes, occurring in the weakly ionized plasmas of the Earth’s ionosphere as well as in the solar chromosphere, are being compared with each other. The main objective is to elaborate on the differences introduced primarily by the grossly different magnitudes of the densities, both with respect to the neutral and, even more so, to the plasma constituents. This leads to great differences in the momentum coupling from the plasma to the neutral component and becomes clear when considering the direct electric current component transverse to the magnetic field, called “Pedersen current”; in the ionosphere, which has no quasi-static counterpart in the chromosphere. The three classes of processes are related to the dynamical response of the two plasmas to energy influx from below and from above. In the first two cases, the energy is carried by waves. The third class concerns plasma erosion or ablation in the two respective regions in reaction to the injection of high Poynting and/or energetic particle fluxes.  相似文献   

5.
We discuss the electromagnetic processes in the ULF range which are important for the coupling between the atmosphere, ionosphere, and magnetosphere (AIM). The main attention is given to the Pc1–2 frequency ranges (f≈0.1–10 Hz) where some natural resonances in the AIM system are located. In particular, we consider the resonant structures in the spectra of the magnetic background noise related to the Alfvén resonances in the ionosphere as a possible diagnostic tool for studies of the ionospheric parameters. We also discuss the self-excitation of Alfvén waves in the ionosphere due to the AIM coupling and the role of such waves in the acceleration of electrons in the upper ionosphere and magnetosphere. Precipitation of magnetospheric ions due to their interaction with the ion-cyclotron waves is analyzed in relation to the ionospheric current systems, formation of partial ring current, and the influence of the ionosphere-magnetosphere feedback on the generation of such waves.  相似文献   

6.
The recent development of several new observational techniques as well as of advanced computer simulation codes has contributed significantly to our understanding of dynamics of the three-dimensional current system during magnetospheric substorms. This paper attempts to review the main results of the last decade of research in such diverse fields as electric fields and currents in the high-latitude ionosphere and field-aligned currents and their relationship to the large-scale distribution of auroras and auroral precipitation. It also contains discussions on some efforts in synthesizing the vast amount of the observations to construct an empirical model which connects the ionospheric currents with field-aligned currents. While our understanding has been greatly improved during the last decade, there is much that is as yet unsettled. For example, we have reached only a first approximation model of the three-dimensional current system which is not inconsistent with integrated, ground-based and space observations of electric and magnetic fields. We have just begun to unfold the cause of the field-aligned currents both in the magnetosphere and ionosphere. Dynamical behaviour of the magnetosphere-ionosphere coupling relating to substorm variability can be an important topic during the coming years.On leave of absence from Kyoto Sangyo University, Kyoto 603, Japan.  相似文献   

7.
Funded by the NSF CubeSat and NASA ELaNa programs, the Dynamic Ionosphere CubeSat Experiment (DICE) mission consists of two 1.5U CubeSats which were launched into an eccentric low Earth orbit on October 28, 2011. Each identical spacecraft carries two Langmuir probes to measure ionospheric in-situ plasma densities, electric field probes to measure in-situ DC and AC electric fields, and a science grade magnetometer to measure in-situ DC and AC magnetic fields. Given the tight integration of these multiple sensors with the CubeSat platforms, each of the DICE spacecraft is effectively a “sensor-sat” capable of comprehensive ionospheric diagnostics. The use of two identical sensor-sats at slightly different orbiting velocities in nearly identical orbits permits the de-convolution of spatial and temporal ambiguities in the observations of the ionosphere from a moving platform. In addition to demonstrating nanosat-based constellation science, the DICE mission is advancing a number of groundbreaking CubeSat technologies including miniaturized mechanisms and high-speed downlink communications.  相似文献   

8.
This review surveys the observations of the ionospheric magnetic fields of Venus as observed on the Pioneer Venus Orbiter and the models that have been developed to describe them over the last decade. The models for the large-scale ionospheric field have developed to the advanced stage of one-dimensional, self-consistent, multi-fluid MHD models which provide a detailed picture of the field in the subsolar region for specific upper boundary conditions. In contrast, the models for the small-scale fields and the nightside fields have only reached a rudimentary stage. Much challenging work remains to be done on the origin of the ionospheric flux ropes and nightside ionospheric hole fields. On the whole, the subject of the ionospheric fields would greatly benefit from 3-dimensional global MHD models with self-consistent treatments of the ionosphere.  相似文献   

9.
This chapter reviews the current understanding of ring current dynamics. The terrestrial ring current is an electric current flowing toroidally around the Earth, centered at the equatorial plane and at altitudes of ∼10,000 to 60,000 km. Enhancements in this current are responsible for global decreases in the Earth’s surface magnetic field, which have been used to define geomagnetic storms. Intense geospace magnetic storms have severe effects on technological systems, such as disturbances or even permanent damage of telecommunication and navigation satellites, telecommunication cables, and power grids. The main carriers of the ring current are positive ions, with energies from ∼1 keV to a few hundred keV, which are trapped by the geomagnetic field and undergo an azimuthal drift. The ring current is formed by the injection of ions originating in the solar wind and the terrestrial ionosphere into the inner magnetosphere. The injection process involves electric fields, associated with enhanced magnetospheric convection and/or magnetospheric substorms. The quiescent ring current is carried mainly by protons of predominantly solar wind origin, while active processes in geospace tend to increase the abundance (both absolute and relative) of O+ ions, which are of ionospheric origin. During intense geospace magnetic storms, the O+ abundance increases dramatically. This increase has been observed to occur concurrently with the rapid intensification of the ring current in the storm main phase and to result in O+ dominance around storm maximum. This compositional change can affect several dynamic processes, such as species-and energy-dependent charge-exchange and wave-particle scattering loss.  相似文献   

10.
As a contribution to the International Magnetospheric Study (IMS, 1976–1979) a two-dimensional array of 42 temporary magnetometer stations was run in Scandinavia, supplementary to the permanent observatories and concentrated in the northern part of the region. This effort aimed at the time-dependent (periods above about 100 s) determination of the two-dimensional structure of substorm-related magnetic fields at the Earth's surface with highest reasonable spatial resolution (about 100 km, corresponding to the height of the ionosphere) near the footpoints of field-aligned electric currents that couple the disturbed magnetosphere to the ionosphere at auroral latitudes. It has been of particular advantage for cooperative studies that not only simultaneous data were available from all-sky cameras, riometers, balloons, rockets, and satellites, but also from the STARE radar facility yielding colocated two-dimensional ionospheric electric field distributions. In many cases it therefore was possible to infer the three-dimensional regional structure of substorm-related ionospheric current systems. The first part of this review outlines the basic relationships and methods that have been used or have been developed for such studies. The second short part presents typical equivalent current patterns observed by the magnetometer array in the course of substorms. Finally we review main results of studies that have been based on the magnetometer array observations and on additional data, omitting studies on geomagnetic pulsations. These studies contributed to a clarification of the nature of auroral electrojets including the Harang discontinuity and of ionospheric current systems related to auroral features such as the break-up at midnight, the westward traveling surge, eastward drifting omega bands, and spirals.  相似文献   

11.
A total of about of 400 orbits during the first year of the ASPERA-3 operation onboard the Mars Express spacecraft were analyzed to obtain a statistical pattern of the main plasma domains in the Martian space environment. The environment is controlled by the direct interaction between the solar wind and the planetary exosphere/ionosphere which results in the formation of the magnetospheric cavity. Ionospheric plasma was traced by the characteristic “spectral lines” of photoelectrons that make it possible to detect an ionospheric component even far from the planet. Plasma of solar wind and planetary origin was distinguished by the ion mass spectrometry. Several different regions, namely, boundary layer/mantle, plasma sheet, region with ionospheric photoelectrons, ray-like structures near the wake boundary were identified. Upstream parameters like solar wind ram pressure and the direction of the interplanetary electric field were inferred as proxy from the Mars Global Surveyor magnetic field data at a reference point of the magnetic pile up region in the northern dayside hemisphere. It is shown that morphology and dynamics of the main plasma domains and their boundaries are governed by these factors as well as by local crustal magnetizations which add complexity and variability to the plasma and magnetic field environment.  相似文献   

12.
The high spatial-temporal resolution of instrumentation on the polar-orbiting S3-2 satellite has allowed a wide variety of measurements of the electrodynamic characteristics of both large- and small-scale structures at high latitudes. Analyses of large scale features observed by S3-2 have shown that: (i) The IMF B ydependence of polar cap convection, first observed in June 1969 by OGO-6 persists in other seasons. During periods of northward IMF B zextensive regions of sunward convection may be found in the sunlit polar cap. (ii) In the dawn and dusk MLT sectors >90% of the region 1 currents lie equatorward of the convection reversal line. Potentials across the ionospheric projection of the low-latitude boundary layer are typically a few kV. (iii) The location of extra field-aligned currents, near the dayside cusp and poleward of the region 1 current sheet is dependent on the IMF B ycomponent. (iv) Simultaneous observations by TRIAD and S3-2 show that sheets of field-aligned current extend uniformly for several hours in MLT, but may have an altitude dependence in the 1000–8000 km range. (v) During magnetic storms ionospheric irregularities occur in regions of poleward density gradients and downward field-aligned currents near the equatorward boundary of diffuse auroral precipitation. In the winter polar cap, density irregularities were also found in regions of highly structured electric fields and soft electron precipitation. (vi) During an intense magnetic storm the auroral zone height-integrated Pederson conductivity was calculated to be in the range 10–30 mho and downcoming energetic electron fluxes accounted for between 50% and 70% of the upward Birkeland currents.Analysis of small-scale structures (latitudinal width < 1°), observed by S3-2, have shown that: (i) Intense meridional electric fields (50–250 mV m-1) generated by charge separation near the inner edge of the plasma sheet drive intense subauroral convection and are associated with field-aligned currents, on the order of 1–2 A m-2. (ii) Case studies of discrete arcs in the auroral oval have shown that arcs are associated with pairs of small-scale, field-aligned currents embedded in the large-scale region 1/region 2 field-aligned current sheets. The maximum observed field-aligned current was an upward current of 135 A m-2, confined to a latitudinal width of 2km and carried by field-aligned accelerated electrons. Return (downward) currents associated with arcs are limited to intensities of 10–15 A m-2. At this limit the ionospheric plasma becomes marginally stable to the onset of ion-cyclotron turbulence. Two instances of plasma vortices, characteristic of auroral curls, have been observed in the region between the paired current sheets. (iii) Sun-aligned arcs in the polar cap are found in a region of negative electric field divergence, embedded in an irregular electric field pattern. The electrons producing the arcs have a temperature of 200 eV and have been accelerated through potential drops of 1 kV along the magnetic field. Return currents may appear on both sides of polar-cap arcs.  相似文献   

13.
Ergun  R.E.  Carlson  C.W.  Mozer  F.S.  Delory  G.T.  Temerin  M.  McFadden  J.P.  Pankow  D.  Abiad  R.  Harvey  P.  Wilkes  R.  Primbsch  H.  Elphic  R.  Strangeway  R.  Pfaff  R.  Cattell  C.A. 《Space Science Reviews》2001,98(1-2):67-91
We describe the electric field sensors and electric and magnetic field signal processing on the FAST (Fast Auroral SnapshoT) satellite. The FAST satellite was designed to make high time resolution observations of particles and electromagnetic fields in the auroral zone to study small-scale plasma interactions in the auroral acceleration region. The DC and AC electric fields are measured with three-axis dipole antennas with 56 m, 8 m, and 5 m baselines. A three-axis flux-gate magnetometer measures the DC magnetic field and a three-axis search coil measures the AC magnetic field. A central signal processing system receives all signals from the electric and magnetic field sensors. Spectral coverage is from DC to 4 MHz. There are several types of processed data. Survey data are continuous over the auroral zone and have full-orbit coverage for fluxgate magnetometer data. Burst data include a few minutes of a selected region of the auroral zone at the highest time resolution. A subset of the burst data, high speed burst memory data, are waveform data at 2×106 sample s–1. Electric field and magnetic field data are primarily waveforms and power spectral density as a function of frequency and time. There are also various types of focused data processing, including cross-spectral analysis, fine-frequency plasma wave tracking, high-frequency polarity measurement, and wave-particle correlations.  相似文献   

14.
Many widely used methods for describing and understanding the magnetosphere are based on balance conditions for quasi-static equilibrium (this is particularly true of the classical theory of magnetosphere/ionosphere coupling, which in addition presupposes the equilibrium to be stable); they may therefore be of limited applicability for dealing with time-variable phenomena as well as for determining cause-effect relations. The large-scale variability of the magnetosphere can be produced both by changing external (solar-wind) conditions and by non-equilibrium internal dynamics. Its developments are governed by the basic equations of physics, especially Maxwell’s equations combined with the unique constraints of large-scale plasma; the requirement of charge quasi-neutrality constrains the electric field to be determined by plasma dynamics (generalized Ohm’s law) and the electric current to match the existing curl of the magnetic field. The structure and dynamics of the ionosphere/magnetosphere/solar-wind system can then be described in terms of three interrelated processes: (1) stress equilibrium and disequilibrium, (2) magnetic flux transport, (3) energy conversion and dissipation. This provides a framework for a unified formulation of settled as well as of controversial issues concerning, e.g., magnetospheric substorms and magnetic storms.  相似文献   

15.
THE ELECTRIC FIELD AND WAVE EXPERIMENT FOR THE CLUSTER MISSION   总被引:1,自引:0,他引:1  
The electric-field and wave experiment (EFW) on Cluster is designed to measure the electric-field and density fluctuations with sampling rates up to 36000 samples s-1. Langmuir probe sweeps can also be made to determine the electron density and temperature. The instrument has several important capabilities. These include (1) measurements of quasi-static electric fields of amplitudes up to 700 mV m-1 with high amplitude and time resolution, (2) measurements over short periods of time of up to five simualtaneous waveforms (two electric signals and three magnetic signals from the seach coil magnetometer sensors) of a bandwidth of 4 kHz with high time resolution, (3) measurements of density fluctuations in four points with high time resolution. Among the more interesting scientific objectives of the experiment are studies of nonlinear wave phenomena that result in acceleration of plasma as well as large- and small-scale interferometric measurements. By using four spacecraft for large-scale differential measurements and several Langmuir probes on one spacecraft for small-scale interferometry, it will be possible to study motion and shape of plasma structures on a wide range of spatial and temporal scales. This paper describes the primary scientific objectives of the EFW experiment and the technical capabilities of the instrument.  相似文献   

16.
Heavy ions in the magnetosphere   总被引:2,自引:0,他引:2  
For purposes of this review heavy ions include all species of ions having a mass per unit charge of 2 AMU or greater. The discussion is limited primarily to ions in the energy range between 100 eV and 100 keV. Prior to the discovery in 1972 of large fluxes of energetic O+ ions precipitating into the auroral zone during geomagnetic storms, the only reported magnetosphere ion species observed in this energy range were helium and hydrogen. More recently O+ and He+ have been identified as significant components of the storm time ring current, suggesting that an ionosphere source may be involved in the generation of the fluxes responsible for this current. Mass spectrometer measurements on board the S3-3 satellite have shown that ionospheric ions in the auroral zone are frequently accelerated upward along geomagnetic field lines to several keV energy in the altitude region from 5000 km to greater than 8000 km. These observations also show evidence for acceleration perpendicular to the magnetic field and thus cannot be explained by a parallel electric field alone. This auroral acceleration region is most likely the source for the magnetospheric heavy ions of ionospheric origin, but further acceleration would probably be required to bring them to characteristic ring current energies. Recent observations from the GEOS-1 spacecraft combined with earlier results suggest comparable contributions to the hot magnetopheric plasma from the solar wind and the ionosphere.Proceedings of the Symposium on Solar Terrestrial Physics held in Innsbruck, May–June 1978.  相似文献   

17.
In several regions of the magnetosphere, perpendicular and/or parallel electric fields are found to be orders-of-magnitude larger than expected from simple considerations. Problems associated with these large fields that may be amenable to study through computer simulations are discussed. Regions in which large electric fields are observed include: a) The auroral ionosphere, where Langmuir soliton-like structures have been measured to contain plasma frequency oscillations as large as 500 mV/m, the envelopes of which have parallel electric fields of 100 mV/m lasting for fractions of a millisecond; b) The auroral acceleration region, where electrostatic shocks have been observed to contain perpendicular fields as large as 1000 mV/m and parallel fields as large as 100 mV/m, and where double layers having parallel fields up to 10 mV/m have been observed; c) The high latitude boundary of the plasma sheet, where turbulent electric fields as large as 100 mV/m have been seen along with quasi-static fields of 5–10 mV/m; d) Inside the plasma sheet, where fields of 5–10 mV/m have frequently been observed; e) The bow shock, where turbulent fields as large as 100 mV/m and d.c. fields of 5 mV/m normal to the shock have been seen.also Physics Department  相似文献   

18.
The large-scale electrical coupling between the ionosphere and magnetosphere is reviewed, particularly with respect to behavior on time scales of hours or more. The following circuit elements are included: (1) the magnetopause boundary layer, which serves as the generator for the magnetospheric-convection circuit; (2) magnetic field lines, usually good conductors but sometimes subject to anomalous resistivity; (3) the ionosphere, which can conduct current across magnetic field lines; (4) the magnetospheric particle distributions, including tail current and partial-ring currents. Magnetic merging and a viscous interaction are considered as possible generating mechanisms, but merging seems the most likely alternative. Several mechanisms have been proposed for causing large potential drops along magnetic field lines in the upper ionosphere, and many isolated measurements of parallel electric fields have been reported, but the global pattern and significance of these electric fields are unknown. Ionospheric conductivities are now thoroughly measured, but are highly variable. Simple self-consistent theoretical models of the magnetospheric-convection system imply that the magnetospheric particles should shield the inner magnetosphere and low-latitude ionosphere from most of the time-average convection electric field.  相似文献   

19.
We present a review of the current state of understanding regarding two classes of irregularities causing mesoscale structuring (hundreds of kilometers) in the nighttime ionosphere at low- and mid-latitudes. Additionally, current state of understanding of equatorial plasma bubbles at low latitudes, and medium-scale traveling ionospheric disturbances at mid latitudes and their relationship to possible seeding from lower altitudes are described. In each case, well-developed linear theories exist to explain the general properties of the irregularities. However, these linear theories have growth rates too low to explain the actual observations, giving rise to the need to invoke seeding mechanisms. We describe the observational databases that have been compiled over the decades and discuss possible coupling and seeding mechanisms that would overcome the low growth rate and explain the observed structuring at the mesoscale. Future research directions are also briefly discussed.  相似文献   

20.
On July 14th, 2017, the first Norwegian scientific satellite NorSat-1 was launched into a high-inclination (98°), low-Earth orbit (600 km altitude) from Baikonur, Kazakhstan. As part of the payload package, NorSat-1 carries the multi-needle Langmuir probe (m-NLP) instrument which is capable of sampling the electron density at a rate up to 1 kHz, thus offering an unprecedented opportunity to continuously resolve ionospheric plasma density structures down to a few meters. Over the coming years, NorSat-1 will cross the equatorial and polar regions twice every 90 minutes, providing a wealth of data that will help to better understand the mechanisms that dissipate energy input from larger spatial scales by creating small-scale plasma density structures within the ionosphere. In this paper we describe the m-NLP system on board NorSat-1 and present some first results from the instrument commissioning phase. We show that the m-NLP instrument performs as expected and highlight its unique capabilities at resolving small-scale ionospheric plasma density structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号