首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Investigation of coupling mechanisms between the troposphere and the ionosphere requires a multidisciplinary approach involving several branches of atmospheric sciences, from meteorology, atmospheric chemistry, and fulminology to aeronomy, plasma physics, and space weather. In this work, we review low frequency electromagnetic wave observations in the Earth-ionosphere cavity from a troposphere-ionosphere coupling perspective. We discuss electromagnetic wave generation, propagation, and resonance phenomena, considering atmospheric, ionospheric and magnetospheric sources, from lightning and transient luminous events at low altitude to Alfvén waves and particle precipitation related to solar and magnetospheric processes. We review ionospheric processes as well as surface and space weather phenomena that drive the coupling between the troposphere and the ionosphere. Effects of aerosols, water vapor distribution, thermodynamic parameters, and cloud charge separation and electrification processes on atmospheric electricity and electromagnetic waves are reviewed. Regarding the role of the lower boundary of the cavity, we review transient surface phenomena, including seismic activity, earthquakes, volcanic processes and dust electrification. The role of surface perturbations and atmospheric gravity waves in ionospheric dynamics is also briefly addressed. We summarize analytical and numerical tools and techniques to model low frequency electromagnetic wave propagation and to solve inverse problems and outline in a final section a few challenging subjects that are important to advance our understanding of tropospheric-ionospheric coupling.  相似文献   

2.
3.
The Earth’s magnetotail is an extremely complex system which—energized by the solar wind—displays many phenomena, and Alfvén waves are essential to its dynamics. While Alfvén waves were first predicted in the early 1940’s and ample observations were later made with rockets and low-altitude satellites, observational evidence of Alfvén waves in different regions of the extended magnetotail has been sparse until the beginning of the new millennium. Here I provide a phenomenological overview of Alfvén waves in the magnetotail organized by region—plasmasphere, central plasma sheet, plasma sheet boundary layer, tail lobes, and reconnection region—with an emphasis on spacecraft observations reported in the new millennium that have advanced our understanding concerning the roles of Alfvén waves in the dynamics of the magnetotail. A brief discussion of the coupling of magnetotail Alfvén waves and the low-altitude auroral zone is also included.  相似文献   

4.
We present a comprehensive review of MHD wave behaviour in the neighbourhood of coronal null points: locations where the magnetic field, and hence the local Alfvén speed, is zero. The behaviour of all three MHD wave modes, i.e. the Alfvén wave and the fast and slow magnetoacoustic waves, has been investigated in the neighbourhood of 2D, 2.5D and (to a certain extent) 3D magnetic null points, for a variety of assumptions, configurations and geometries. In general, it is found that the fast magnetoacoustic wave behaviour is dictated by the Alfvén-speed profile. In a ??=0 plasma, the fast wave is focused towards the null point by a refraction effect and all the wave energy, and thus current density, accumulates close to the null point. Thus, null points will be locations for preferential heating by fast waves. Independently, the Alfvén wave is found to propagate along magnetic fieldlines and is confined to the fieldlines it is generated on. As the wave approaches the null point, it spreads out due to the diverging fieldlines. Eventually, the Alfvén wave accumulates along the separatrices (in 2D) or along the spine or fan-plane (in 3D). Hence, Alfvén wave energy will be preferentially dissipated at these locations. It is clear that the magnetic field plays a fundamental role in the propagation and properties of MHD waves in the neighbourhood of coronal null points. This topic is a fundamental plasma process and results so far have also lead to critical insights into reconnection, mode-coupling, quasi-periodic pulsations and phase-mixing.  相似文献   

5.
Voitenko  Yuriy  Goossens  Marcel 《Space Science Reviews》2003,107(1-2):387-401
We study kinetic excitation mechanisms for high-frequency dispersive Alfvén waves in the solar corona, solar wind, and Earth's magnetosphere. The ion-cyclotron and Cherenkov kinetic effects are important for these waves which we call the ion-cyclotron kinetic Alfvén waves (ICKAWs). Ion beams, anisotropic particles distributions and currents provide free energy for the excitation of ICKAWs in space plasmas. As particular examples we consider ICKAW instabilities in the coronal magnetic reconnection events, in the fast solar wind, and in the Earth's magnetopause. Energy conversion and transport initiated by ICKAW instabilities is significant for the whole dynamics of Sun-Earth connection chain, and observations of ICKAW activity could provide a diagnostic/predictive tool in the space environment research. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
The plasma model for the magnetosphere and ionosphere is first discussed. A review of some parts of the theory for a warm collisionless plasma of interest in the magnetosphere in connection with waves of periods between 0.1 and 1000 seconds is given. The theory for magnetohydro-dynamic waves in a slightly ionized gas is then summarized. The available observational data about magnetospheric and ionospheric phenomena, which may be interpreted in terms of waves with periods between 0.1 and 1000 seconds, are briefly surveyed and some theoretical applications to the ionosphere and magnetosphere are finally discussed. The theory of shock phenomena and transients in the magnetosphere is not included in the report.  相似文献   

7.
We review our recent results of Alfvén wave-driven winds. First, we present the result of self-consistent 1D MHD simulations for solar winds from the photosphere to interplanetary region. Here, we emphasize the importance of the reflection of Alfvén waves in the density stratified corona and solar winds. We also introduce the recent Hinode observation that might detect the reflection signature of transverse (Alfvénic) waves by Fujimura and Tsuneta (Astrophys. J. 702:1443, 2009). Then, we show the results of Alfvén wave-driven winds from red giant stars. As a star evolves to the red giant branch, the properties of stellar winds drastically change from steady coronal winds to intermittent chromospheric winds. We also discuss how the stellar evolution affects the wave reflection in the stellar atmosphere and similarities and differences of accretion disk winds by MHD turbulence.  相似文献   

8.
Rempel  E.L.  Chian  A.C.-L.  Borotto  F.A. 《Space Science Reviews》2003,107(1-2):503-506
Nonthermal magnetospheric radio emissions provide the radio signatures of solar-terrestrial connection and may be used for space weather forecasting. A three-wave model of auroral radio emissions at the fundamental plasma frequency was proposed by Chian et al. (1994) involving resonant interactions of Langmuir, whistler and Alfvén waves. Chaos can appear in the nonlinear evolution of this three-wave process in the magnetosphere. We discuss two types of intermittency in radio signals driven by temporal chaos: the type-I Pomeau-Manneville intermittency and the interior crisis-induced intermittency. Examples of time series for both types of intermittency are presented. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
The auroral zone ionosphere is coupled to the outer magnetosphere by means of field-aligned currents. Parallel electric fields associated with these currents are now widely accepted to be responsible for the acceleration of auroral particles. This paper will review the theoretical concepts and models describing this coupling. The dynamics of auroral zone particles will be described, beginning with the adiabatic motions of particles in the converging geomagnetic field in the presence of parallel potential drops and then considering the modifications to these adiabatic trajectories due to wave-particle interactions. The formation of parallel electric fields can be viewed both from microscopic and macroscopic viewpoints. The presence of a current carrying plasma can give rise to plasma instabilities which in a weakly turbulent situation can affect the particle motions, giving rise to an effective resistivity in the plasma. Recent satellite observations, however, indicate that the parallel electric field is organized into discrete potential jumps, known as double layers. From a macroscopic viewpoint, the response of the particles to a parallel potential drop leads to an approximately linear relationship between the current density and the potential drop.The currents flowing in the auroral circuit must close in the ionosphere. To a first approximation, the ionospheric conductivity can be considered to be constant, and in this case combining the ionospheric Ohm's Law with the linear current-voltage relation for parallel currents leads to an outer scale length, above which electric fields can map down to the ionosphere and below which parallel electric fields become important. The effects of particle precipitation make the picture more complex, leading to enhanced ionization in upward current regions and to the possibility of feedback interactions with the magnetosphere.Determining adiabatic particle orbits in steady-state electric and magnetic fields can be used to determine the self-consistent particle and field distributions on auroral field lines. However, it is difficult to pursue this approach when the fields are varying with time. Magnetohydrodynamic (MHD) models deal with these time-dependent situations by treating the particles as a fluid. This class of model, however, cannot treat kinetic effects in detail. Such effects can in some cases be modeled by effective transport coefficients inserted into the MHD equations. Intrinsically time-dependent processes such as the development of magnetic micropulsations and the response of the magnetosphere to ionospheric fluctuations can be readily treated in this framework.The response of the lower altitude auroral zone depends in part on how the system is driven. Currents are generated in the outer parts of the magnetosphere as a result of the plasma convection. The dynamics of this region is in turn affected by the coupling to the ionosphere. Since dissipation rates are very low in the outer magnetosphere, the convection may become turbulent, implying that nonlinear effects such as spectral transfer of energy to different scales become important. MHD turbulence theory, modified by the ionospheric coupling, can describe the dynamics of the boundary-layer region. Turbulent MHD fluids can give rise to the generation of field-aligned currents through the so-called -effect, which is utilized in the theory of the generation of the Earth's magnetic field. It is suggested that similar processes acting in the boundary-layer plasma may be ultimately responsible for the generation of auroral currents.  相似文献   

10.
This review is devoted to ponderomotive forces and their importance for the acceleration of charged particles by electromagnetic waves in space plasmas. Ponderomotive forces constitute time-averaged nonlinear forces acting on a media in the presence of oscillating electromagnetic fields. Ponderomotive forces represent a useful analytical tool to describe plasma acceleration. Oscillating electromagnetic fields are also related with dissipative processes, such as heating of particles. Dissipative processes are, however, left outside these discussions. The focus will be entirely on the (conservative) ponderomotive forces acting in space plasmas. The review consists of seven sections. In Section 1, we explain the rational for using the auxiliary ponderomotive forces instead of the fundamental Lorentz force for the study of particle motions in oscillating fields. In Section 2, we present the Abraham, Miller, Lundin–Hultqvist and Barlow ponderomotive forces, and the Bolotovsky–Serov ponderomotive drift. The hydrodynamic, quasi-hydrodynamic, and ‘`test-particle’' approaches are used for the study of ponderomotive wave-particle interaction. The problems of self-consistency and regularization are discussed in Section 3. The model of static balance of forces (Section 4) exemplifies the interplay between thermal, gravitational and ponderomotive forces, but it also introduces a set of useful definitions, dimensionless parameters, etc. We analyze the Alfvén and ion cyclotron waves in static limit with emphasis on the specific distinction between traveling and standing waves. Particular attention has been given to the impact of traveling Alfvén waves on the steady state anabatic wind that blows over the polar regions (Section~5). We demonstrate the existence of a wave-induced cold anabatic wind. We also show that, at a critical point, the ponderomotive acceleration of the wind is a factor of 3 greater than the thermal acceleration. Section 6 demonstrates various manifestations of ponderomotive forces in the Earth's magnetosphere, for instance the ionospheric plasma acceleration and outflow. The polar wind and the auroral density cavities are considered in relation to results from the Freja and Viking satellites. The high-altitude energization and escape of ions is discussed. The ponderomotive anharmonicity of standing Alfvén waves is analyzed from ground based ULF wave measurements. The complexity of the many challenging problems related with plasma processes near the magnetospheric boundaries is discussed in the light of recent Cluster observations. At the end of Section 6, we consider the application of ponderomotive forces to the diversity of phenomena on the Sun, in the interstellar environment, on newborn stars, pulsars and active galaxies. We emphasize the role of forcing of magnetized plasmas in general and ponderomotive forcing in particular, presenting some simple conceivable scenarios for massive outflow and jets from astrophysical objects.  相似文献   

11.
Titan has the most significant atmosphere of any moon in the solar system, with a pressure at the surface larger than the Earth??s. It also has a significant ionosphere, which is usually immersed in Saturn??s magnetosphere. Occasionally it exits into Saturn??s magnetosheath. In this paper we review several recent advances in our understanding of Titan??s ionosphere, and present some comparisons with the other unmagnetized objects Mars and Venus. We present aspects of the ionospheric structure, chemistry, electrodynamic coupling and transport processes. We also review observations of ionospheric photoelectrons at Titan, Mars and Venus. Where appropriate, we mention the effects on ionospheric escape.  相似文献   

12.
Onsager  T.G.  Lockwood  M. 《Space Science Reviews》1997,80(1-2):77-107
Two central issues in magnetospheric research are understanding the mapping of the low-altitude ionosphere to the distant regions of the magnetsphere, and understanding the relationship between the small-scale features detected in the various regions of the ionosphere and the global properties of the magnetosphere. The high-latitude ionosphere, through its magnetic connection to the outer magnetosphere, provides an important view of magnetospheric boundaries and the physical processes occurring there. All physical manifestations of this magnetic connectivity (waves, particle precipitation, etc.), however, have non-zero propagation times during which they are convected by the large-scale magnetospheric electric field, with phenomena undergoing different convection distances depending on their propagation times. Identification of the ionospheric signatures of magnetospheric regions and phenomena, therefore, can be difficult. Considerable progress has recently been made in identifying these convection signatures in data from low- and high-altitude satellites. This work has allowed us to learn much about issues such as: the rates of magnetic reconnection, both at the dayside magnetopause and in the magnetotail; particle transport across the open magnetopause; and particle acceleration at the magnetopause and the magnetotail current sheets.  相似文献   

13.
Sources of Ion Outflow in the High Latitude Ionosphere   总被引:4,自引:0,他引:4  
Yau  A. W.  André  M. 《Space Science Reviews》1997,80(1-2):1-25
Ion composition observations from polar-orbiting satellites in the past three decades have revealed and confirmed the occurrence of a variety of ion outflow processes in the high-latitude ionosphere. These processes constitute a dominant source of ionospheric plasma to the Earth's magnetosphere. We review the current state of our observational knowledge on their occurrence, energy, composition, variability, interrelationships, and quantitative contributions to the overall mass input to the magnetosphere. In addition, we identify the prevalent sources and the gaps of our current understanding of these sources.  相似文献   

14.
Alfvén waves are considered to be viable transporters of the non-thermal energy required to heat the Sun’s quiescent atmosphere. An abundance of recent observations, from state-of-the-art facilities, have reported the existence of Alfvén waves in a range of chromospheric and coronal structures. Here, we review the progress made in disentangling the characteristics of transverse kink and torsional linear magnetohydrodynamic (MHD) waves. We outline the simple, yet powerful theory describing their basic properties in (non-)uniform magnetic structures, which closely resemble the building blocks of the real solar atmosphere.  相似文献   

15.
We have surveyed solar wind plasma beta and field-aligned Alfvénic Mach number using Ulysses and Wind data. We show the characteristic timescale and occurrence frequency of ‘magnetically dominated’ solar wind, whose interaction with a planetary magnetosphere may produce a bow shock with multiple shock fronts. We discuss radial, latitudinal, and solar cycle effects. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
Magnetic field data from a meridian chain of observatories and the recently developed computer codes constitute a powerful tool in studying substorm current systems in the polar region. In this paper, we summarize some of the results obtained from the IMS Alaska meridian chain of observatories. The basic data are the average daily magnetic field variations for 50 successive days (March 9–April 27, 28) which represent a moderately disturbed period. With the aid of the two computer codes, we obtained the distribution of the following quantities in the polar ionosphere in invariant-MLT coordinates: (1) the total ionospheric current; (2) the Pedersen current; (3) the Hall current; (4) the field-aligned currents; (5) the Pedersen-associated field-aligned currents; (6) the Hall-associated field-aligned currents; (7) the electric potential; (8) the Joule heat production rate; (9) the auroral particle energy injection rate; (10) the total energy dissipation rate. All these quantities are related to each other self-consistently at every point under the initial assumptions used in the computation. By using a model of the magnetosphere, the following quantities in the polar ionosphere are projected onto the equatorial plane and the Y — Z plane at X = -20 R E: (11) the Pedersen current counterpart; (12) the Hall current counterpart; (13) the electric potential; (14) the Pedersen-associated field-aligned currents; (15) the Hall-associated field-aligned currents. These distribution patterns serve as an important basis for studying the generation mechanisms of substorm current systems and the magnetosphere-ionosphere coupling process.  相似文献   

17.
The recent development of several new observational techniques as well as of advanced computer simulation codes has contributed significantly to our understanding of dynamics of the three-dimensional current system during magnetospheric substorms. This paper attempts to review the main results of the last decade of research in such diverse fields as electric fields and currents in the high-latitude ionosphere and field-aligned currents and their relationship to the large-scale distribution of auroras and auroral precipitation. It also contains discussions on some efforts in synthesizing the vast amount of the observations to construct an empirical model which connects the ionospheric currents with field-aligned currents. While our understanding has been greatly improved during the last decade, there is much that is as yet unsettled. For example, we have reached only a first approximation model of the three-dimensional current system which is not inconsistent with integrated, ground-based and space observations of electric and magnetic fields. We have just begun to unfold the cause of the field-aligned currents both in the magnetosphere and ionosphere. Dynamical behaviour of the magnetosphere-ionosphere coupling relating to substorm variability can be an important topic during the coming years.On leave of absence from Kyoto Sangyo University, Kyoto 603, Japan.  相似文献   

18.
The discovery of terrestrial O+ and other heavy ions in magnetospheric hot plasmas, combined with the association of energetic ionospheric outflows with geomagnetic activity, led to the conclusion that increasing geomagnetic activity is responsible for filling the magnetosphere with ionospheric plasma. Recently it has been discovered that a major source of ionospheric heavy ion plasma outflow is responsive to the earliest impact of coronal mass ejecta upon the dayside ionosphere. Thus a large increase in ionospheric outflows begins promptly during the initial phase of geomagnetic storms, and is already present during the main phase development of such storms. We hypothesize that enhancement of the internal source of plasma actually supports the transition from substorm enhancements of aurora to storm-time ring current development in the inner magnetosphere. Other planets known to have ring current-like plasmas also have substantial internal sources of plasma, notably Jupiter and Saturn. One planet having a small magnetosphere, but very little internal source of plasma, is Mercury. Observations suggest that Mercury has substorms, but are ambiguous with regard to the possibility of magnetic storms of the planet. The Messenger mission to Mercury should provide an interesting test of our hypothesis. Mercury should support at most a modest ring current if its internal plasma source is as small as is currently believed. If substantiated, this hypothesis would support a general conclusion that the magnetospheric inflationary response is a characteristic of magnetospheres with substantial internal plasma sources. We quantitatively define this hypothesis and pose it as a problem in comparative magnetospheres.  相似文献   

19.
The plasmasphere is the cold, dense innermost region of the magnetosphere that is populated by upflow of ionospheric plasma along geomagnetic field lines. Driven directly by dayside magnetopause reconnection, enhanced sunward convection erodes the outer layers of the plasmasphere. Erosion causes the plasmasphere outer boundary, the plasmapause, to move inward on the nightside and outward on the dayside to form plumes of dense plasma extending sunward into the outer magnetosphere. Coupling between the inner magnetosphere and ionosphere can significantly modify the convection field, either enhancing sunward flows near dusk or shielding them on the night side. The plasmaspheric configuration plays a crucial role in the inner magnetosphere; wave-particle interactions inside the plasmasphere can cause scattering and loss of warmer space plasmas such as the ring current and radiation belts.  相似文献   

20.
The structure of the outer solar atmosphere and its magnetic coupling to the photospheric motions indicate the existence of large-scale current systems. The heating and the dynamics of coronal structures is therefore governed by electrodynamic coupling of these structures to the underlying photosphere. In a structured corona, the heating is enhanced because of several processes such as resonance absorption of Alfvénic surface waves, anomalous Joule heating, reconnection and the related topological dissipation. The global thermal and dynamic behaviour of coronal structures can be fruitfully described in terms of equivalent electrodynamic circuits, taking into account the paramount role of the photospheric boundaries. Coronal current systems may be stable, as in the case of coronal loops, but occassionally they show catastrophic behaviour if the current intensity surpasses a critical threshold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号