首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The M4.0/SF flare on 17 March 2002 is a good example of the early observations with RHESSI. We presenthard X-ray images, light curves and energy spectra of individual hard X-ray sources, the spatial relationship between the hard X-ray sources and the H emission regions, and comparisons of light curves observed by RHESSI and GOES. We found that the picture exhibited by RHESSI is consistent with the general cartoon of a solar flare. In particular, we showed that the hard X-ray image spectra could be explained by a power-law electron beam with a lower energy cutoff Ec. The derived Ec could be as high as 40 keV, larger than the usually value of 20 keV.  相似文献   

2.
X-ray telescopes have been providing high sensitivity X-ray observations in numerous missions. For X-ray telescopes in the future, one of the key technologies is to expand the energy band beyond 10 keV. We designed depth-graded multilayer, so-called supermirrors, for a hard X-ray telescope in the energy band up to 40 keV using lightweight thin-foil optics. They were successfully flown in a balloon flight and obtained a hard X-ray image of Cyg X-1 in the 20–40 keV band. Now supermirrors are promising to realize a hard X-ray telescope. We have estimated the performance of a hard X-ray telescope using a platinum–carbon supermirror for future satellite missions, such as NeXT (Japan) and XEUS (Europe). According to calculations, they will have a significant effective area up to 80 keV, and their effective areas will be more than 280 cm2 even at 60 keV. Limiting sensitivity will be down to 1.7 × 10−13 erg cm−2 s−1 in the 10–80 keV band at a 100 ks observation. In this paper, we present the results of the balloon experiment with the first supermirror flown and projected effective areas of hard X-ray telescopes and action items for future missions.  相似文献   

3.
Hard X-ray and high frequency decimetric type III radio bursts have been observed in association with the soft X-raysolar flare (GOES class M 6.1) on 4 April 2002 (1532 UT). The flare apparently occurred 6 degrees behind the east limb of the Sun in the active region NOAA 9898. Hard X-ray spectra and images were obtained by the X-ray imager on RHESSI during the impulsive phase of the flare. The Brazilian Solar Spectroscope and Ondrejov Radio Telescopes recorded type III bursts in 800–1400 MHz range in association with the flare. The images of the 3–6, 6–12, 12–25, and 25–50 keV X-ray sources, obtained simultaneously by RHESSI during the early impulsive phase of the flare, show that all the four X-ray sources were essentially at the same location well above the limb of the Sun. During the early impulsive phase, the X-ray spectrum over 8–30 keV range was consistent with a power law with a negative exponent of 6. The radio spectra show drifting radio structures with emission in a relatively narrow (Δf ≤ 200 MHz) frequency range indicating injection of energetic electrons into a plasmoid which is slowly drifting upwards in the corona.  相似文献   

4.
The footpoint motions of flare hard X-ray (HXR) sources are directly related to the reconnection scenario of a solar flare. In this work, we tried to extract the information of footpoint motions for a number of flares observed with RHESSI. We found that the RHESSI flare results of the footpoint motions strongly support the classification proposed from the observations of YOHKOH/HXT. Furthermore, it is found that a flare can consist of two types of footpoint motions. We discussed the connections of the footpoint motions with the two-dimensional reconnection models.  相似文献   

5.
We studied the M3.7 class flare which occurred on 2005 July 27, in the active region NOAA 10792. This flare is an over-the-limb flare, and the footpoints are entirely occulted by the solar disk. The microwave and the hard X-ray images obtained with the Nobeyama Radioheliograph and the RHESSI satellite, respectively, clearly showed emission sources above the post-flare loop system. We examined the emission sources in detail spatially, temporally, and spectroscopically. As a result, one of the hard X-ray emission sources and the microwave emission source are nonthermal.  相似文献   

6.
We describe the “Monitor e Imageador de Raios-X” (MIRAX), an X-ray astronomy satellite mission proposed by the high-energy astrophysics group at the National Institute for Space Research (INPE) in Brazil to the Brazilian Space Agency. MIRAX is an international collaboration that includes, besides INPE, the University of California San Diego, the University of Tübingen in Germany, the Massachusetts Institute of Technology and the Space Research Organization Netherlands. The payload of MIRAX will consist of two identical hard X-ray cameras (10–200 keV) and one soft X-ray camera (2–28 keV), both with angular resolution of 5–7. The basic objective of MIRAX is to carry out continuous broadband imaging spectroscopy observations of a large source sample (9 months/yr) in the central Galactic plane region. This will allow the detection, localization, possible identification, and spectral/temporal study of the entire history of transient phenomena to be carried out in one single mission. MIRAX will have sensitivities of 5 mCrab/day in the 2–10 keV band (2 times better than the All Sky Monitor on Rossi X-ray Timing Explorer) and 2.6 mCrab/day in the 10–100 keV band (40 times better than the Earth Occultation technique of the Burst and Transient Source Experiment on the Compton Gamma-Ray Observatory). The MIRAX spacecraft will weigh about 200 kg and is expected to be launched in a low-altitude (600 km) circular equatorial orbit around 2007/2008.  相似文献   

7.
We present preliminary results from analyses of hard X-ray and optical observations of a soft X-ray selected sample. We created a small but complete sample with 20 of the softest and brightest objects with low Galactic absorption from the ROSAT bright soft X-ray selected radio-quiet AGN sample. This sample consists of 10 narrow-line Seyfert 1 galaxies and 10 broad-line Seyfert galaxies. We analyze ASCA data in the 0.6–10 keV band and optical spectra from ground-based telescopes. We investigate the photon indices in the hard X-ray band, soft excesses in the ASCA band, and optical emission line properties. The photon indices in the 2–10 keV band are nominal for both narrow-line Seyfert 1 galaxies and broad-line Seyfert 1 galaxies in each class compared with other heterogeneous samples. All of the narrow-line Seyfert 1 galaxies show soft excesses, but this component seems to be less significant for broad-line Seyfert 1 galaxies. There seems to be a trend of steeper X-ray spectra to be accompanied by narrower Hβ for narrow-line Seyfert 1 galaxies, but this is not extended to the larger velocity width regime of broad-line Seyfert 1 galaxies, and no clear trend is seen among them.  相似文献   

8.
This work is based on hard and soft X-ray observations from the YOHKOH satellite. We investigate an example of an arcade flare, for which the arcade channel is seen in soft X-rays as a long bright filament. We have found that:
1. (1) Energy can efficiently flow along the arcade channel from the very beginning of a flare.
2. (2) During flare evolution a few kernels of hard X-ray emission develop along the arcade channel. Clearly, they are new, additional sources of the flare energy release. A probable scheme of formation of such hard X-ray kernels is briefly discussed.
  相似文献   

9.
It is believed that a large fraction of the total energy released in a solar flare goes initially into acceleratedelectrons. These electrons generate the observed hard X-ray bremsstrahlung as they lose most of their energy by coulomb collisions in the lower corona and chromosphere. Results from the Solar Maximum Mission showed that there may be even more energy in accelerated electrons with energies above 25 keV than in the soft X-ray emitting thermal plasma. If this is the case, it is difficult to understand why the Neupert Effect — the empirical result that for many flares the time integral of the hard X-ray emission closely matches the temporal variation of the soft X-ray emission — is not more clearly observed in many flares. From recent studies, it appears that the fraction of the released energy going into accelerated electrons is lower, on average, for smaller flares than for larger flares. Also, from relative timing differences, about 25% of all flares are inconsistent with the Neupert Effect. The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) is uniquely capable of investigating the Neupert Effec since it covers soft X-rays down to 3 keV (when both attenuators are out of the field of view) and hard X-rays with keV energy resolution, arcsecond-class angular resolution, and sub-second time resolution. When combined with the anticipated observations from the Soft X-ray Imager on the next GOES satellite, these observations will provide us with the ability to track the Neupert Effect in space and time and learn more about the relation between plasma heating and particle acceleration. The early results from RHESSI show that the electron spectrum extends down to as low as 10 keV in many flares, thus increasing the total energy estimates of the accelerated electrons by an order of magnitude or more compared with the SMM values. This combined with the possible effects of filling factors smaller than unity for the soft X-ray plasma suggest that there is significantly more energy in nonthermal electrons than in the soft X-ray emitting plasma in many flares.  相似文献   

10.
An M7.6 flare was well observed on October 24, 2003 in active region 10486 by a few instruments and satellites, including GOES, TRACE, SOHO, RHESSI and NoRH. Multi-wavelength study shows that this flare underwent two episodes. During the first episode, only a looptop source of <40 keV was observed in reconstructed RHESSI images, which showed shrinkage with a velocity of 12–14 km s−1 in a period of about 12 min. During the second process, in addition to the looptop source, two footpoint sources were observed in energy channel of as high as ∼200 keV. One of them showed fast propagation along one of the two TRACE 1600 Å flare ribbons and the 195 Å loop footpoints, which could be explained by successive magnetic reconnection. The associated CME showed a mass pickup process with decreasing center-of-mass velocity. The decrease of the CME kinetic energy and the increase of its potential energy lead to an almost constant total energy during the CME propagation. Our results reveal that the flare and its associated CME have comparable energy content, and the flare is of non-thermal property.  相似文献   

11.
Japanese future space programs for high energy astrophysics are presented. The Astro-E2 mission which is the recovery mission of the lost Astro-E has been approved and now scheduled to be put in orbit in early 2005. The design of the whole spacecraft remains the same as that of Astro-E, except for some improvements in the scientific instruments. In spite of the five years of delay, Astro-E2 is still powerful and timely X-ray mission, because of the high energy resolution spectroscopy (FWHM 6 eV in 0.3–10 keV) and high-sensitivity wide-band spectroscopy (0.3–600 keV). The NeXT (New X-ray Telescope) mission, which we propose to have around 2010, succeeds and extends the science which Astro-E2 will open. It will carry five or six sets of X-ray telescopes which utilize super-mirror technology to enable hard X-ray imaging up to 60–80 keV. In mid-2010s, we would participate in the European XEUS mission, which explores the early (z>5) “hot” universe.  相似文献   

12.
In flares that occur behind the limb, the intense chromospheric (foot-point) part of the hard X-ray source is occulted, thus permitting good observations of the coronal component. Between 15 and 18 April 2002, RHESSI observed a series of small (GOES Class C) flares produced by the active region NOAA 9905 as it rotated behind the west limb. A preliminary analysis of the observed hard X-ray sources in the 17–18 April 2002 flares has confirmed that flare-associated sources of gradual 12–25 keV X-ray emission can exist in the corona at heights up to 27000 km.  相似文献   

13.
The SIGMA telescope realizes images of the sky in the hard X-ray domain (40 keV–1.3 MeV) through a coded mask system. The extragalactic study was one of the main objectives and has brought new results in our knowledge of the Active Galactic Nuclei behavior at high energy.

In fact, the variability is the most important factor as all these objects have been showed to display strong evolution in intensity or/and spectral shape. Moreover, the discovery of a new hard X-ray source close to 3C273 and probably strongly absorbed below 40–50 keV could have many consequences in the extragalactic field.  相似文献   


14.
The observations of X-ray Nova in Musca (GRS1124-684) by two coded mask telescopes on board GRANAT observatory provided spectral data in broad 3 – 1300 keV band. During these observations, spanned over a year, the Nova was detected in a three apparently different spectral states, corresponding to different epochs of the soft X-ray light curve: (1) A spectrum with two distinct components (soft, below 8 keV and hard power law tail with slope 2.5, detected up to 300 keV). The soft emission changed gradually with characteristic decay time around 30 days, while power law component exhibited strong variability on the time scales of several hours and decreased much more slowly. (2) A soft spectrum (without hard power law tail), observed during the “kick” of the soft X-ray light curve. (3) A hard power law spectrum with slope 2.2. Thus, while the 3 – 300 keV luminosity decreased by more than order of magnitude, the source passed through all spectral states known for galactic black hole candidates (Cyg X-1, GX339-4, 1E1740.7-2942, GRS1758-258 etc.).

On January 20–21 1991, the SIGMA telescope aboard GRANAT detected a relatively narrow variable emission line near 500 keV (Fig.1,2) with net flux ≈ 6 · 10−3 phot/s/cm2, most probably related with electron-positron annihilation processes, occurring in the source /1–4/. Additional excess above power law continuum, centered around 200 keV, was found during this observation.  相似文献   


15.
The hard X-ray spectra of small subset of accreting pulsars show absorption-like line features in the range 10–100 keV. These lines, referred to as cyclotron lines or cyclotron resonance scattering features, are due to photons scattered out of the line of sight by electrons trapped in the 1012 G pulsar polar cap magnetic field. In this paper we present a review of observations, from the discovery of a cyclotron line in Hercules X-1 to recent results with RXTE and INTEGRAL.  相似文献   

16.
Astrosat will be the first full-fledged Indian Astronomy mission aimed at multiwavelength studies in the optical, near- and far-UV and a broad X-ray spectral band covering 0.5–100 keV. This mission will have the capability of high time-resolution X-ray studies (10 μs timing), low and medium energy-resolution spectral studies and high angular-resolution (about 2″) imaging observations in the UV and optical bands simultaneously. This is realized by using a set of three co-aligned X-ray astronomy instruments and one UV imaging telescope consisting of two similar instruments. Detection and timing studies of X-ray transients and persisting sources will be done by a Scanning Sky X-ray Monitor. This mission will enable studies of different classes of galactic and extragalactic sources in the frontier area of high energy astronomy. Scientific objectives of the mission are highlighted in this paper. A brief summary of the design and characteristics of the X-ray and UV instruments and their expected sensitivities are presented.  相似文献   

17.
Two soft X-ray images of the Chamaeleon I star forming cloud obtained with the ROSAT Position Sensitive Proportional Counter are presented. Seventy reliable, and perhaps 19 additional, X-ray sources are found. Up to Ninety percent of these sources are certainly or probably identified with T Tauri stars formed in the cloud. Twenty to 35 are probably previously unrecognized ‘weak’ T Tauri (WTT) stars. T Tauri X-ray luminosities range from log , or 102 – 104 times solar levels, with mean in the 0.2–2.5 keV band. The X-ray luminosities of well-studied Chamaeleon cloud members are correlated with a complex of four stellar properties: effective temperature, mass, radius and bolometric luminosity. The spatial distribution, H-R diagram locations of the stars indicate WTT and CTT are coeval. The total premain sequence population of the cloud is likely to be > 100 stars, with WTT stars outnumbering ‘classical’ T Tauri (CTT) stars by 2:1.  相似文献   

18.
We present results from ROSAT observations of NGC 1808 and NGC 2903. Exposures of 10 ksec each with the PSPC detector show X-ray sources at the central positions of both galaxies which are classified as nuclear starburst galaxies. Both targets, NGC 1808 and NGC 2903 appear slightly extended in X-ray maps in the energy band 0.1–2.4 keV. The X-ray spectrum of NGC 1808 shows almost complete absorption below 0.5 keV, indicating an extremely high hydrogen column density towards that source (NH ≈ 8 × 1021cm−2 resulting from model fits on the PSPC spectrum). In case of NGC 2903, the number of counts in the ROSAT band is significantly lower than expected from a previous EINSTEIN investigation of the source.  相似文献   

19.
In this paper, we analyze the footpoint motion of two large solar flares using observations made by the Transition Region and Coronal Explorer (TRACE) and Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The two flares are the M5.7 flare of March 14, 2002 and the X10 flare of October 29, 2003. They are both classical two-ribbon flares as observed in TRACE 1600 or 171 Å images and have long-duration conjugate hard X-ray (HXR) footpoint emission. We use the ‘center-of-mass’ method to locate the centroids of the UV/EUV flare ribbons. The results are: (1) The conjugate UV/EUV ribbons and HXR footpoints of the two flares show a converging (inward) motion during the impulsive phase. For the two flares, the converging motion lasts about 3 and 10 min, respectively. The usual separation (outward) motion for the flare ribbons and footpoints take place only after the converging motion. (2) During the inward and the outward motion, the conjugate ribbons and footpoints of the two events exhibit a strong unshear motion. In obtaining above results, TRACE UV/EUV and RHESSI HXR data show an overall agreement. The two events demonstrate that the magnetic reconnection for the flares occurs in highly sheared magnetic field. Furthermore, the results support the magnetic model constructed by Ji et al. [Ji, H., Huang, G., Wang, H. Astrophys. J. 660, 893–900, 2007], who proposed that the contracting motion of flaring loops is the signature of the relaxation of sheared magnetic fields.  相似文献   

20.
We present here results obtained from three BeppoSAX observations of the transient X-ray pulsar GRO J1948+32 carried out during the declining phase of its 2000 November–2001 June outburst. Timing analysis of the data clearly shows a 18.7 s pulsation in the X-ray light curves in 0.1–100 keV energy band. The pulse profile of GRO 1948+32 is characterized by a broad peak with a sharp rise followed by a narrow dip. The dip in the pulse profile shows very strong energy dependence. Phase-averaged spectroscopy obtained with three of the BeppoSAX instruments shows that the 0.1–100 keV energy spectrum is described by a Comptonized component, a weak blackbody component (7% of the total emission) for soft X-rays, a narrow and weak iron emission line at 6.7 keV and low column density of material in the line of sight. The results obtained from the analysis are discussed in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号