首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
2.
2001 Mars Odyssey Mission Summary   总被引:1,自引:0,他引:1  
Saunders  R.S.  Arvidson  R.E.  Badhwar  G.D.  Boynton  W.V.  Christensen  P.R.  Cucinotta  F.A.  Feldman  W.C.  Gibbs  R.G.  Kloss  C.  Landano  M.R.  Mase  R.A.  McSmith  G.W.  Meyer  M.A.  Mitrofanov  I.G.  Pace  G.D.  Plaut  J.J.  Sidney  W.P.  Spencer  D.A.  Thompson  T.W.  Zeitlin  C.J. 《Space Science Reviews》2004,110(1-2):1-36
The 2001 Mars Odyssey spacecraft, now in orbit at Mars, will observe the Martian surface at infrared and visible wavelengths to determine surface mineralogy and morphology, acquire global gamma ray and neutron observations for a full Martian year, and study the Mars radiation environment from orbit. The science objectives of this mission are to: (1) globally map the elemental composition of the surface, (2) determine the abundance of hydrogen in the shallow subsurface, (3) acquire high spatial and spectral resolution images of the surface mineralogy, (4) provide information on the morphology of the surface, and (5) characterize the Martian near-space radiation environment as related to radiation-induced risk to human explorers. To accomplish these objectives, the 2001 Mars Odyssey science payload includes a Gamma Ray Spectrometer (GRS), a multi-spectral Thermal Emission Imaging System (THEMIS), and a radiation detector, the Martian Radiation Environment Experiment (MARIE). THEMIS and MARIE are mounted on the spacecraft with THEMIS pointed at nadir. GRS is a suite of three instruments: a Gamma Subsystem (GSS), a Neutron Spectrometer (NS) and a High-Energy Neutron Detector (HEND). The HEND and NS instruments are mounted on the spacecraft body while the GSS is on a 6-m boom. Some science data were collected during the cruise and aerobraking phases of the mission before the prime mission started. THEMIS acquired infrared and visible images of the Earth-Moon system and of the southern hemisphere of Mars. MARIE monitored the radiation environment during cruise. The GRS collected calibration data during cruise and aerobraking. Early GRS observations in Mars orbit indicated a hydrogen-rich layer in the upper meter of the subsurface in the Southern Hemisphere. Also, atmospheric densities, scale heights, temperatures, and pressures were observed by spacecraft accelerometers during aerobraking as the spacecraft skimmed the upper portions of the Martian atmosphere. This provided the first in-situ evidence of winter polar warming in the Mars upper atmosphere. The prime mission for 2001 Mars Odyssey began in February 2002 and will continue until August 2004. During this prime mission, the 2001 Mars Odyssey spacecraft will also provide radio relays for the National Aeronautics and Space Administration (NASA) and European landers in early 2004. Science data from 2001 Mars Odyssey instruments will be provided to the science community via NASA’s Planetary Data System (PDS). The first PDS release of Odyssey data was in October 2002; subsequent releases occur every 3 months.  相似文献   

3.
4.
Aeolian (wind) processes can transport particles over large distances on Mars, leading to the modification or removal of surface features, formation of new landforms, and mantling or burial of surfaces. Erosion of mantling deposits by wind deflation can exhume older surfaces. These processes and their effects on the surface must be taken into account in using impact crater statistics to derive chronologies on Mars. In addition, mapping the locations, relative ages, and orientations of aeolian features can provide insight into Martian weather, climate, and climate history.  相似文献   

5.
Bow Shock and Upstream Phenomena at Mars   总被引:1,自引:0,他引:1  
Mazelle  C.  Winterhalter  D.  Sauer  K.  Trotignon  J.G.  Acuña  M.H.  Baumgärtel  K.  Bertucci  C.  Brain  D.A.  Brecht  S.H.  Delva  M.  Dubinin  E.  Øieroset  M.  Slavin  J. 《Space Science Reviews》2004,111(1-2):115-181
Mars Global Surveyor is the sixth spacecraft to return measurements of the Martian bow shock. The earlier missions were Mariner 4 (1964), Mars 2 and 3 (1972), Mars 5 (1975) and Phobos 2 (1989) (see reviews by Gringauz, 1981; Slavin and Holzer, 1982; Russell, 1985; Vaisberg, 1992a,b; Zakharov, 1992). Previous investigations of planetary bow shocks have established that their position, shape and jump conditions are functions of the upstream flow parameters and the nature of the solar wind — planet interaction (Spreiter and Stahara, 1980; Slavin et al., 1983; Russell, 1985). At Mars, however, the exact nature of the solar wind interaction was elusive due to the lack of low altitude plasma and magnetic field measurements (e.g., Axford, 1991). In fact our knowledge of the nature of the interaction of Mars with the solar wind was incomplete until the arrival of MGS and the acquisition of close-in magnetic field data (Acuña et al., 1998). As detailed by a series of review papers in this monograph, the Mars Global Surveyor (MGS) mission has now shown that the Mars environment is very complex with strong, highly structured crustal magnetic remnants in the southern hemisphere, while the northern hemisphere experiences the direct impingement of solar wind plasma. This review paper first presents a survey of the observations on the Martian bow shock and the upstream phenomena in the light of results from all the missions to date. It also discusses the kinetic properties of the Martian bow shock compared to the predictions of simulations studies. Then it examines the current status of understanding of these phenomena, including the possible sources of upstream low-frequency waves and the interpretations of localized disturbances in the upstream solar wind around Mars. Finally, it briefly discusses the open issues and questions that require further study.  相似文献   

6.
The Rover Environmental Monitoring Station (REMS) will investigate environmental factors directly tied to current habitability at the Martian surface during the Mars Science Laboratory (MSL) mission. Three major habitability factors are addressed by REMS: the thermal environment, ultraviolet irradiation, and water cycling. The thermal environment is determined by a mixture of processes, chief amongst these being the meteorological. Accordingly, the REMS sensors have been designed to record air and ground temperatures, pressure, relative humidity, wind speed in the horizontal and vertical directions, as well as ultraviolet radiation in different bands. These sensors are distributed over the rover in four places: two booms located on the MSL Remote Sensing Mast, the ultraviolet sensor on the rover deck, and the pressure sensor inside the rover body. Typical daily REMS observations will collect 180 minutes of data from all sensors simultaneously (arranged in 5 minute hourly samples plus 60 additional minutes taken at times to be decided during the course of the mission). REMS will add significantly to the environmental record collected by prior missions through the range of simultaneous observations including water vapor; the ability to take measurements routinely through the night; the intended minimum of one Martian year of observations; and the first measurement of surface UV irradiation. In this paper, we describe the scientific potential of REMS measurements and describe in detail the sensors that constitute REMS and the calibration procedures.  相似文献   

7.
ExoMars is a two-launch mission undertaken by Roscosmos and European Space Agency. Trace Gas Orbiter, a satellite part of the 2016 launch carries the Fine Resolution Neutron Detector instrument as part of its payload. The instrument aims at mapping hydrogen content in the upper meter of Martian soil with spatial resolution between 60 and 200 km diameter spot. This resolution is achieved by a collimation module that limits the field of view of the instruments detectors. A dosimetry module that surveys the radiation environment in cruise to Mars and on orbit around it is another part of the instrument.This paper describes the mission and the instrument, its measurement principles and technical characteristics. We perform an initial assessment of our sensitivity and time required to achieve the mission goal. The Martian atmosphere is a parameter that needs to be considered in data analysis of a collimated neutron instrument. This factor is described in a section of this paper. Finally, the first data accumulated during cruise to Mars is presented.  相似文献   

8.
The distant shores of Mars were reached by numerous U.S. and Russian spacecraft throughout the 1960s to mid 1970s. Nearly 20 years have passed since those successful missions which orbited and landed on the Martian surface. Two Soviet probes headed for the planet in July, 1988, but later failed. In August 1993, the U.S. Mars Observer suddenly went silent just three days before it was to enter orbit around the planet and was never heard from again. In late 1996, there will be renewed activity on the launch pads with three probes departing for the red planet: 1) The U.S. Mars Global Surveyor will be launched in November on a Delta II rocket and will orbit the planet for global mapping purposes; 2) Russia's Mars '96 mission, scheduled to fly in November on a Proton launcher, consists of an orbiter, two small stations which will land on the Martian surface, and two penetrators that will plow into the terrain; and finally, 3) a U.S. Discovery-class spacecraft, the Mars Pathfinder, has a December launch date atop a Delta II booster. The mission features a lander and a microrover that will travel short distances over Martian territory. These missions usher in a new phase of Mars exploration, setting the stage for an unprecedented volley of spacecraft that will orbit around, land on, drive across, and perhaps fly at low altitudes over the planet.  相似文献   

9.
We analyze the complete set of in-situ meteorological data obtained from the Viking landers in the 1970s to today’s Curiosity rover to review our understanding of the modern near-surface climate of Mars, with focus on the dust, CO2 and H2O cycles and their impact on the radiative and thermodynamic conditions near the surface. In particular, we provide values of the highest confidence possible for atmospheric opacity, atmospheric pressure, near-surface air temperature, ground temperature, near-surface wind speed and direction, and near-surface air relative humidity and water vapor content. Then, we study the diurnal, seasonal and interannual variability of these quantities over a span of more than twenty Martian years. Finally, we propose measurements to improve our understanding of the Martian dust and H2O cycles, and discuss the potential for liquid water formation under Mars’ present day conditions and its implications for future Mars missions. Understanding the modern Martian climate is important to determine if Mars could have the conditions to support life and to prepare for future human exploration.  相似文献   

10.
Sulfate-dominated sedimentary deposits are widespread on the surface of Mars, which contrasts with the rarity of carbonate deposits, and indicates surface waters with chemical features drastically different from those on Earth. While the Earth’s surface chemistry and climate are intimately tied to the carbon cycle, it is the sulfur cycle that most strongly influences the Martian geosystems. The presence of sulfate minerals observed from orbit and in-situ via surface exploration within sedimentary rocks and unconsolidated regolith traces a history of post-Noachian aqueous processes mediated by sulfur. These materials likely formed in water-limited aqueous conditions compared to environments indicated by clay minerals and localized carbonates that formed in surface and subsurface settings on early Mars. Constraining the timing of sulfur delivery to the Martian exosphere, as well as volcanogenic H2O is therefore central, as it combines with volcanogenic sulfur to produce acidic fluids and ice. Here, we reassess and review the Martian geochemical reservoirs of sulfur from the innermost core, to the mantle, crust, and surficial sediments. The recognized occurrences and the mineralogical features of sedimentary sulfate deposits are synthesized and summarized. Existing models of formation of sedimentary sulfate are discussed and related to weathering processes and chemical conditions of surface waters. We also review existing models of sulfur content in the Martian mantle and analyze how volcanic activities may have transferred igneous sulfur into the exosphere and evaluate the mass transfers and speciation relationships between volcanic sulfur and sedimentary sulfates. The sedimentary clay-sulfate succession can be reconciled with a continuous volcanic eruption rate throughout the Noachian-Hesperian, but a process occurring around the mid-Noachian must have profoundly changed the composition of volcanic degassing. A hypothetical increase in the oxidation state or in water content of Martian lavas or a decrease in atmospheric pressure is necessary to account for such a change in composition of volcanic gases. This would allow the pre mid-Noachian volcanic gases to be dominated by water and carbon-species but late Noachian and Hesperian volcanic gases to be sulfur-rich and characterized by high SO2 content. Interruption of early dynamo and impact ejection of the atmosphere may have decreased the atmospheric pressure during the early Noachian whereas it remains unclear how the redox state or water content of lavas could have changed. Nevertheless, volcanic emission of SO2 rich gases since the late Noachian can explain many features of Martian sulfate-rich regolith, including the mass of sulfate and the particular chemical features (i.e. acidity) of surface waters accompanying these deposits. How SO2 impacted on Mars’s climate, with possible short time scale global warming and long time scale cooling effects, remains controversial. However, the ancient wet and warm era on Mars seems incompatible with elevated atmospheric sulfur dioxide because conditions favorable to volcanic SO2 degassing were most likely not in place at this time.  相似文献   

11.
The human radiation environment for several short-duration stay manned Mars missions is predicted using the Mission Radiation Calculation (MIRACAL) program, which was developed at NASA Langley Research Center. This program provides dose estimates for galactic cosmic rays (GCR) and large and ordinary solar proton flare events for various amounts of effective spacecraft shielding (both operational and storm shelter thicknesses) and a given time history of the spacecraft's heliocentric position. The results of this study show that most of the missions can survive the most recent large flares (if they were to occur at the missions' perihelion) if a 25 g/cm2 storm shelter is assumed. The dose predictions show that missions during solar minima (when solar flare activity is the lowest) are not necessarily the minimum dose cases, due to increased GCR contribution during this time period. The direct transfer mission studied has slightly lower doses than the outbound Venus swingby mission [on the order of 10-20 centi-Sieverts (cSv) lower], with the greatest dose differences for the assumed worst case scenario (when the large flares occur at perihelion). The GCR dose for a mission can be reduced by having the crew spend some fraction of its day nominally in the storm shelter (other than during flare events).  相似文献   

12.
The SEIS (Seismic Experiment for Interior Structures) instrument onboard the InSight mission to Mars is the critical instrument for determining the interior structure of Mars, the current level of tectonic activity and the meteorite flux. Meeting the performance requirements of the SEIS instrument is vital to successfully achieve these mission objectives. Here we analyse in-situ wind measurements from previous Mars space missions to understand the wind environment that we are likely to encounter on Mars, and then we use an elastic ground deformation model to evaluate the mechanical noise contributions on the SEIS instrument due to the interaction between the Martian winds and the InSight lander. Lander mechanical noise maps that will be used to select the best deployment site for SEIS once the InSight lander arrives on Mars are also presented. We find the lander mechanical noise may be a detectable signal on the InSight seismometers. However, for the baseline SEIS deployment position, the noise is expected to be below the total noise requirement \(>97~\%\) of the time and is, therefore, not expected to endanger the InSight mission objectives.  相似文献   

13.
Radar observations in the past were used to investigate the astronomical properties of the planet and its reflectivity in radar frequencies. Because of the difficulties in signal detection and processing due to the low level of return signal, the data were published only in the form of Doppler spectrograms. In view of the increasing interest in Mars and the practicability of missions to Mars this paper uses the published data to evaluate the angular behavior of the radar backscattering characteristics of Mars; a required information for the design of radar equipment of spacecrafts. In addition, results of past observations are summarized, analyzed and discussed in terms of a general interpretation of the Martian surface. It is found that the generally accepted suggestion that Mars is a relatively smooth planet, smoother than the Moon, is confirmed by most of the results, but not all observations agree with this hypothesis. A surface model of relief and composition based on radar information in conjunction with other observations is reviewed. The processing methods of radar return signals are compared for a better understanding of the handling of the Doppler spectrogram, a form which is most widely used for the presentation of processed data.An extensive bibliography of available papers and reports relevant to radar observations and the surface and lower atmosphere of Mars is included. The literature is concerned mainly with post-Mariner IV experiment, the mission which changed considerably many conceptions of Mars.  相似文献   

14.
The InSight mission launches in 2018 to characterize several geophysical quantities on Mars, including the heat flow from the planetary interior. This quantity will be calculated by utilizing measurements of the thermal conductivity and the thermal gradient down to 5 meters below the Martian surface. One of the components of InSight is the Mole, which hammers into the Martian regolith to facilitate these thermal property measurements. In this paper, we experimentally investigated the effect of the Mole’s penetrating action on regolith compaction and mechanical properties. Quasi-static and dynamic experiments were run with a 2D model of the 3D cylindrical mole. Force resistance data was captured with load cells. Deformation information was captured in images and analyzed using Digitial Image Correlation (DIC). Additionally, we used existing approximations of Martian regolith thermal conductivity to estimate the change in the surrounding granular material’s thermal conductivity due to the Mole’s penetration. We found that the Mole has the potential to cause a high degree of densification, especially if the initial granular material is relatively loose. The effect on the thermal conductivity from this densification was found to be relatively small in first-order calculations though more complete thermal models incorporating this densification should be a subject of further investigation. The results obtained provide an initial estimate of the Mole’s impact on Martian regolith thermal properties.  相似文献   

15.
The main aspects of the Martian stratigraphy have been determined from the detailed study of Mariner 9 and Viking Orbiter images. Three major stratigraphic systems, the Noachian System, the Hesperian System, and the Amazonian System, are inferred from these studies. The global geological evolution of Mars is essentially derived from its stratigraphy. It reveals that tectonism and volcanism were widespread during two major periods (Noachian and Lower Hesperian) and became more localized during the Upper Hesperian and Amazonian periods. The transition between these two major periods occurred about 2 Ga ago, and significant geologic activity could still be present. However, a number of geologic features and processes remain little understood. Future investigations, including complete high resolution imaging and detailed mapping, geochemical mapping, in situ chemical analyses, etc., will be necessary in order to improve our knowledge of the Martian stratigraphy and geologic evolution and are essential to prepare any future Mars Sample Return mission and the Human Exploration of this planet.  相似文献   

16.
We have evaluated the Lyman-α limb emission from the exospheric hydrogen of Mars measured by the neutral particle detector of the ASPERA-3 instrument on Mars Express in 2004 at low solar activity (solar activity index = 42, F10.7=100). We derive estimates for the hydrogen exobase density, n H = 1010 m?3, and for the apparent temperature, T > 600 K. We conclude that the limb emission measurement is dominated by a hydrogen component that is considerably hotter than the bulk temperature at the exobase. The derived values for the exosphere density and temperature are compared with similar measurements done by the Mariner space probes in the 1969. The values found with Mars Express and Mariner data are brought in a broader context of exosphere models including the possibility of having two hydrogen components in the Martian exosphere. The present observation of the Martian hydrogen exosphere is the first one at high altitudes during low solar activity, and shows that for low solar activity exospheric densities are not higher than for high solar activity.  相似文献   

17.
Mars Express and MARSIS   总被引:1,自引:0,他引:1  
Nielsen  Erling 《Space Science Reviews》2004,111(1-2):245-262
Space Science Reviews - The Mars Express mission to be launched in 2003 will provide high resolution measurements of the Martian atmosphere and ionosphere. The neutral density, temperature, and...  相似文献   

18.
Measurements of radiation levels at Mars including the contributions of protons, neutrons, and heavy ions, are pre-requisites for human exploration. The MARIE experiment on the Mars-01 Odyssey spacecraft consists of a spectrometer to make such measurements in Mars orbit. MARIE is measuring the galactic cosmic ray energy spectra during the maximum of the 24th solar cycle, and studying the dynamics of solar particle events and their radial dependence in orbit of Mars. The MARIE spectrometer is designed to measure the energy spectrum from 15 to 500 MeV/n, and when combined other space based instruments, such as the Advanced Composition Explorer (ACE), would provide accurate GCR spectra. Similarly, observations of solar energetic particles can be combined with observations at different points in the inner heliosphere from, for example, the Solar Heliospheric Observatory (SOHO), to gain information on the propagation and radial dependence in the Earth-Mars space. Measurements can be compared with the best available radiation environment and transport models in order to improve these models for subsequent use, and to provide key inputs for the engineering of spacecraft to better protect the human crews exploring Mars.  相似文献   

19.
The SEIS (Seismic Experiment for Interior Structures) instrument on board the InSight mission to Mars is the critical instrument for determining the interior structure of Mars, the current level of tectonic activity and the meteorite flux. Meeting the performance requirements of the SEIS instrument is vital to successfully achieve these mission objectives. The InSight noise model is a key tool for the InSight mission and SEIS instrument requirement setup. It will also be used for future operation planning. This paper presents the analyses made to build a model of the Martian seismic noise as measured by the SEIS seismometer, around the seismic bandwidth of the instrument (from 0.01 Hz to 1 Hz). It includes the instrument self-noise, but also the environment parameters that impact the measurements. We present the general approach for the model determination, the environment assumptions, and we analyze the major and minor contributors to the noise model.  相似文献   

20.
Aymeric Spiga  Don Banfield  Nicholas A. Teanby  François Forget  Antoine Lucas  Balthasar Kenda  Jose Antonio Rodriguez Manfredi  Rudolf Widmer-Schnidrig  Naomi Murdoch  Mark T. Lemmon  Raphaël F. Garcia  Léo Martire  Özgür Karatekin  Sébastien Le Maistre  Bart Van Hove  Véronique Dehant  Philippe Lognonné  Nils Mueller  Ralph Lorenz  David Mimoun  Sébastien Rodriguez  Éric Beucler  Ingrid Daubar  Matthew P. Golombek  Tanguy Bertrand  Yasuhiro Nishikawa  Ehouarn Millour  Lucie Rolland  Quentin Brissaud  Taichi Kawamura  Antoine Mocquet  Roland Martin  John Clinton  Éléonore Stutzmann  Tilman Spohn  Suzanne Smrekar  William B. Banerdt 《Space Science Reviews》2018,214(7):109
In November 2018, for the first time a dedicated geophysical station, the InSight lander, will be deployed on the surface of Mars. Along with the two main geophysical packages, the Seismic Experiment for Interior Structure (SEIS) and the Heat-Flow and Physical Properties Package (HP3), the InSight lander holds a highly sensitive pressure sensor (PS) and the Temperature and Winds for InSight (TWINS) instrument, both of which (along with the InSight FluxGate (IFG) Magnetometer) form the Auxiliary Sensor Payload Suite (APSS). Associated with the RADiometer (RAD) instrument which will measure the surface brightness temperature, and the Instrument Deployment Camera (IDC) which will be used to quantify atmospheric opacity, this will make InSight capable to act as a meteorological station at the surface of Mars. While probing the internal structure of Mars is the primary scientific goal of the mission, atmospheric science remains a key science objective for InSight. InSight has the potential to provide a more continuous and higher-frequency record of pressure, air temperature and winds at the surface of Mars than previous in situ missions. In the paper, key results from multiscale meteorological modeling, from Global Climate Models to Large-Eddy Simulations, are described as a reference for future studies based on the InSight measurements during operations. We summarize the capabilities of InSight for atmospheric observations, from profiling during Entry, Descent and Landing to surface measurements (pressure, temperature, winds, angular momentum), and the plans for how InSight’s sensors will be used during operations, as well as possible synergies with orbital observations. In a dedicated section, we describe the seismic impact of atmospheric phenomena (from the point of view of both “noise” to be decorrelated from the seismic signal and “signal” to provide information on atmospheric processes). We discuss in this framework Planetary Boundary Layer turbulence, with a focus on convective vortices and dust devils, gravity waves (with idealized modeling), and large-scale circulations. Our paper also presents possible new, exploratory, studies with the InSight instrumentation: surface layer scaling and exploration of the Monin-Obukhov model, aeolian surface changes and saltation / lifing studies, and monitoring of secular pressure changes. The InSight mission will be instrumental in broadening the knowledge of the Martian atmosphere, with a unique set of measurements from the surface of Mars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号