首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This review focuses on the conditions for -ray line production in the most interesting astronomical objects, in light of the planned experiments: Gamma-1, GRO, Sigma, GRASP, and others. Among these objects are the Sun, the galactic center region, molecular and dust clouds, accreting and exploding stars.  相似文献   

2.
The purpose of this work is to study the various -ray-production mechanisms in solar flares and to calculate the flux, the spectrum, and the decay curves of radiation. Using the continuity equation and taking into account the energy losses for solar-flare-accelerated particles, we obtain the time-dependent particle distribution and thus the time behavior of the resulting rays. The important processes for producing rays in solar flares are found to be nonthermal electron bremsstrahlung, decay of neutral mesons, positron annihilation, neutron capture, and decay of excited nuclei. The results are applied to several known solar flares. For a large flare such as the class 3+ on February 23, 1956, continuous rays with energies up to 100 MeV from electron bremsstrahlung and neutral meson decays are observable at the orbit of the Earth by existing -ray detectors. Line rays from positron annihilation (0.51 MeV), neutron capture (2.23 MeV), and deexcitation of excited nuclei O16 (6.14 and 7.12 MeV) and C12 (4.43 MeV) are particularly strong and well above the continuous -ray background due to electron bremsstrahlung. These lines can be detected at the Earth.NASA-NRC Resident Research Associate.  相似文献   

3.
We consider the influence of the nonlinear stage of gravitational instability on the two-point correlation functions of gravitationally bound objects. Based on the theory of nonlinear gravitational contraction of a single density peak of dissipationless matter (Gurevich and Zybin, 1988a,b; 1990) we develop a method for calculating the two-point correlation functions of different objects of any mass. The method works good in the region of strong correlations and can be easily extended to calculate higher correlation functions. We show that the main contribution to the correlation function i in the region of strong correlations i 1 is made by pair systems located outside large clusters of objects. In this region the shape of i is determined only by the nonlinear dynamics of gravitational contraction of dissipationless matter and has the form i C , where 1.8 is a universal parameter.  相似文献   

4.
Thanks to remarkable new tools, such as the Goddard High Resolution Spectrograph (GHRS) on board the HST and the EUVE spectrometer on the interstellar side, and Ulysses particle detectors on the heliospheric side, it is possible now to begin to compare abundances and physical properties of the interstellar matter outside the heliosphere (from absorption features in the stellar spectra), and inside the heliosphere (from in situ or remote detection of the interstellar neutrals or their derivatives, the pick-up ions or the Anomalous Cosmic Rays detected by the two Voyager spacecraft).Ground-based and UV spectra of nearby stars show that the Sun is located between two volumes of gas of different heliocentric velocities V and temperatures T (see also Linsky et al, this issue). One of these clouds has the same velocity (V= 25.6 km s–1 from = 255 and =8) and temperature (6700 K) as the heliospheric helium of interstellar origin probed by Ulysses, and is certainly surrounding our star (and then the Local Interstellar Cloud or LIC). This Identification allows comparisons between interstellar constituents on both sides of the heliospheric interface.Ly-alpha background data (absorption cell and recent HST-GHRS spectra) suggest that the heliospheric neutral H velocity is smaller by 5–6 km s–1 than the local cloud velocity, and therefore that H is decelerated at its entrance into the heliosphere, in agreement with interaction models between the heliosphere and the ISM which include the coupling with the plasma. This is in favor of a non negligible electron density (at least 0.05 cm3). There are other indications of a rather large ionization of the ambient ISM, such as the ionization equilibrium of interstellar magnesium and of sodium. However the resulting range for the plasma density is still broad.The heliospheric neutral hydrogen number density (0.08–0.16 cm–3) is now less precisely determined than the helium density (0.013–0.017 cm–3, see Gloeckler, Witte et al, Mobius, this issue). The comparison between the neutral hydrogen to neutral helium ratios in the ISM (recent EUVE findings) and in the heliosphere, suggests that 15 to 70% of H does not enter the heliosphere. The comparison between the interstellar oxygen relative abundance (with respect to H and He) in the ISM and the heliospheric abundance deduced from pick-up ions is also in favor of some filtration, and thus of a non-negligible ionization.For a significant ISM plasma density, one expects a Hydrogen wall to be present as an intermediate state of the interstellar H around the interface between inside and outside. Since 1993, the two UVS instruments on board Voyager 1 and 2 indeed reveal clearly the existence of an additional Ly-alpha emission, probably due to a combination of light from the compressed H wall, and from a galactic source. On the other hand, the decelerated and heated neutral hydrogen of this H wall has recently been detected in absorption in the spectra of nearby stars (see Linsky, this issue).  相似文献   

5.
The local interstellar medium can be probed in different ways: by analyzing low energy X-ray data in the range 0.1–0.4 keV, where the radiation is absorbed by the interstellar gas at column densities in excess of about 1020 cm-2 — and can therefore be regarded as local, by determining the absorption of stellar emission spectra from nearby stars along their lines of sight by intervening gas and by directin situ measurements of those components which penetrate the heliosphere sufficiently far, provided they can be distinguished from interplanetary material. The current status of these different investigations gives the following picture: the solar system is surrounded by a bubble of hot gas (density 0.005cm-3, temperature 106 K) out to several tens of parsecs. More locally it is embedded in a small warm cloud of density 0.07cm-3, temperature 7000 K, column density 5 × 1017 cm-2 — which gives a mass of about 0.1M . The transition to the heliosphere is governed by solar UV ionization, snowploughing of the interstellar gas by the outwardly expanding solar wind and the bow shock. The heliosphere is the region inside the solar wind terminal shock. Classically it would be regarded as not yet affected by (or aware of) the obstacle ahead. Practically, the existence of the interstellar medium makes itself felt even far inside the heliosphere by the penetration of neutral gas, dust, plasma waves, shock accelerated particles and cosmic rays. These are the local probes of the interstellar medium.  相似文献   

6.
Pickup ions measured deep inside the heliosphere open a new way to determine the absolute atomic density of a number of elements and isotopes in the local interstellar cloud (LIC). We derive the atomic abundance of hydrogen and the two isotopes of helium from the velocity and spatial distributions of interstellar pickup protons and ionized helium measured with the Solar Wind Ion Composition Spectrometer (SWICS) on the Ulysses spacecraft between 2 and 5 AU. The atomic hydrogen density near the termination shock derived from interstellar pickup ion measurements is 0.115±0.025 cm–3 and the atomic H/He ratio from these observations is found to be 7.7 ± 1.3 in the outer heliosphere. Comparing this value with the standard universal H/He ratio of 10 we conclude that filtration of hydrogen is small and that the ionization fraction of hydrogen in the LIC is low.  相似文献   

7.
High energy -rays from individual giant molecular clouds contain unique information about the hidden sites of acceleration of galactic cosmic rays, and provide a feasible method for study of propagation of cosmic rays in the galactic disk on scales 100 pc. I discuss the spectral features of 0-decay -radiation from clouds/targets located in proximity of relatively young proton accelerators, and speculate that such `accelerator+target systems in our Galaxy can be responsible for a subset of unidentified EGRET sources. Also, I argue that the recent observations of high energy -rays from the Orion complex contain evidence that the level of the `sea of galactic cosmic rays may differ significantly from the flux and the spectrum of local (directly detected) particles.  相似文献   

8.
Since the baryon-to-photon ratio 10 is in some doubt at present, we ignore the constraints on 10 from big bang nucleosynthesis (BBN) and fit the three key cosmological parameters (h, M, 10) to four other observational constraints: Hubble parameter (ho), age of the universe (to), cluster gas (baryon) fraction (fo fGh3/2), and effective shape parameter (o). We consider open and flat CDM models and flat CDM models, testing goodness of fit and drawing confidence regions by the 2 method. CDM models with M = 1 (SCDM models) are accepted only because we allow a large error on ho, permitting h < 0.5. Open CDM models are accepted only for M 0.4. CDM models give similar results. In all of these models, large 10 ( 6) is favored strongly over small 10 ( 2), supporting reports of low deuterium abundances on some QSO lines of sight, and suggesting that observational determinations of primordial 4He may be contaminated by systematic errors. Only if we drop the crucial o constraint are much lower values of M and 10 permitted.  相似文献   

9.
X-ray spectra of the BL Lac type object Mkn 421 and several Seyfert type 1 galaxies; IIIZw2, MCG8-11-11 and NGC 4151, have been obtained using the Leicester University instrument on board the Ariel-6 satellite. The Mkn 421 spectrum is best represented by two powerlaw components, the soft component having 3.4 whilst the hard flux has 1.0. In MCG8-11-11 there is clear evidence for spectral variability between our observation in late 1979 and that of HEAO-1/A2 in 1977. The Ariel-6 spectrum of MCG8-11-11 can be fitted by a powerlaw of index 2.1 together with an iron line at 6.2 keV with an equivalent width of 1.6 keV. The first X-ray spectrum of IIIZw2 is also presented, fitting with a powerlaw we find an index of 1.7. With the exception of NGC 4151 there is no evidence for a significant column of cool material along the line of sight.  相似文献   

10.
Baryons observed in Ly absorbers contribute to the density parameter 0 by bar 0.06 in close agreement with the value of 0.06 from primordial nucleosynthesis (H0=55 km s-1 Mpc-1, = 0 assumed throughout). A number of methods are known to measure 0 from density fluctuations; bound structures tend to yield lower values (m 0.2-0.4), field galaxies over large scales higher, but still undercritical values (m 0.6 ± 0.2). The best compromise value is 0 0.5, but the present methods are blind to diffusely distributed, exotic matter which still could make 0 = 1. A satisfactory solution of 0 (and ) will only come from a fundamental cosmological test (e.g. the Hubble diagram of [evolution-corrected] supernovae type Ia) in combination with the CMB fluctuation spectrum.  相似文献   

11.
In this paper we discuss theoretical expressions, determining the difference of Doppler shifts of various coherent radiowave frequencies emitted by a radiator moving in the ionosphere or interplanetary medium. The rotating Doppler effect (Faraday effect) caused by the Doppler shifts ±H of the ordinary and extraordinary waves is also considered. In a three-dimensional inhomogeneous ionosphere, stationary in time (N/t = 0), is determined in the general case, by an equation with three variables. The equation for proper depends only on the local value of the electron concentration N c around the radiator and on integral values, determining, by means of additional calculations, the angle of refraction or its components, the horizontal gradients of electron concentration N/x and N/y, and in some cases, the integral electron concentration 0 zcN dz. We describe the analysis of the measurements, made with the satellites Cosmos I, II and partially XI, assuming that N/t = N/y = 0, with a two variables equation. The expected errors are considered. The results coincide well for different points (Moscow, The Crimea, Sverdlovsk) and thus agree with the measurements of H and with height-frequency ionospheric characteristics. The curve giving electron concentration versus height N (z) in the outer ionosphere (above the maximum of F2), shows a new maximum higher than the main maximum of the ionosphere N MF2 at 120–140 km. At this maximum the value of N (z) is (0.9–0.95) N MF2. The new data on the large-scale horizontal inhomogeneities of the ionosphere, exceed the previous ones by about a factor 10. By means of the irregular variations of the spectrum W() of the inhomogenous formation is determined. Three unknown constant maxima with values 16 to 18 km, 28 to 32 km and 100 to 120 km are found. The spectrum W () mainly characterizes the local properties of the ionosphere along the orbit of the satellite.  相似文献   

12.
This instrument is designed to make measurements of the full three-dimensional distribution of suprathermal electrons and ions from solar wind plasma to low energy cosmic rays, with high sensitivity, wide dynamic range, good energy and angular resolution, and high time resolution. The primary scientific goals are to explore the suprathermal particle population between the solar wind and low energy cosmic rays, to study particle accleration and transport and wave-particle interactions, and to monitor particle input to and output from the Earth's magnetosphere.Three arrays, each consisting of a pair of double-ended semi-conductor telescopes each with two or three closely sandwiched passivated ion implanted silicon detectors, measure electrons and ions above 20 keV. One side of each telescope is covered with a thin foil which absorbs ions below 400 keV, while on the other side the incoming <400 keV electrons are swept away by a magnet so electrons and ions are cleanly separated. Higher energy electrons (up to 1 MeV) and ions (up to 11 MeV) are identified by the two double-ended telescopes which have a third detector. The telescopes provide energy resolution of E/E0.3 and angular resolution of 22.5°×36°, and full 4 steradian coverage in one spin (3 s).Top-hat symmetrical spherical section electrostatic analyzers with microchannel plate detectors are used to measure ions and electrons from 3 eV to 30 keV. All these analyzers have either 180° or 360° fields of view in a plane, E/E0.2, and angular resolution varying from 5.6° (near the ecliptic) to 22.5°. Full 4 steradian coverage can be obtained in one-half or one spin. A large and a small geometric factor analyzer measure ions over the wide flux range from quiet-time suprathermal levels to intense solar wind fluxes. Similarly two analyzers are used to cover the wide range of electron fluxes. Moments of the electron and ion distributions are computed on board.In addition, a Fast Particle Correlator combines electron data from the high sensitivity electron analyzer with plasma wave data from the WAVE experiment (Bougeretet al., in this volume) to study wave-particle interactions on fast time scales. The large geometric factor electron analyzer has electrostatic deflectors to steer the field of view and follow the magnetic field to enhance the correlation measurements.  相似文献   

13.
The magnetogram inversion technique (MIT) is based upon recordings of geomagnetic variations at the worldwide network of ground-based magnetometers. MIT ensures a calculation of a global spatial distribution of the electric field, currents and Joule heating in the ionosphere. Variant MIT-2 provides, additionally, continuous monitoring of the following parameters: Poynting vector flux from the solar wind into the magnetosphere (); power, both dissipated and accumulated in the magnetosphere; magnetic flux in the open tail; and the magnetotail length (l T) (distance between the dayside and nightside neutral points in the Dungey model). Using MIT-2 and data of direct measurements in the solar wind, an analysis is made of a number of substorms, and a new scenario of substorms is suggested. The scenario includes the convection model, the model with a neutral line and the model of magnetosphere-ionosphere coupling (outside the current sheet), i.e., the three known models. A brief review is given of these and some other substorms models. A new element in the scenario is the strong positive feedback in the primary generator circuit, which ensures growth of the ratio = / Aby an order of magnitude or more during the substorms. Here Ais the Pointing vector flux in the Akasofu-Perrault approximation, i.e., without the feedback taken into account. The growth of during the substorm is caused only by the feedback effect. It is assumed that the feedback arises due to an elongation of the magnetotail, i.e., a growth of l Tby a factor of (23) during the substorm.In the active phase of substorm, a part (the first active phase) has been identified, where the principal role in the energetics is played by the feedback mechanism and the external energy source (although the internal source plus reconnection inside the plasma sheet make a marked contribution). In the second active phase (expansion) the external generator (solar wind) is switched off, and the main role is now played by the internal energy source (the tail magnetic field and ionospheric wind energy).Models of DP-2 DP-1 transitions are also considered, as well as the magnetospheric substorm-solar flare analogy.  相似文献   

14.
If the path of the neutral line on the coronal source surface is expressible as a singlevalued function (colatitude vs longitude ), then Fourier analysis of ctn with respect to leads to a simple algorithm for realistically mapping the neutral line outward to model the heliospheric current sheet (HCS) at distancesr1 AU. To be compatible with MHD, the source surface used for this mapping should be prolate (aligned with dipole axis) rather than spherical. Orientation of the Sun's magnetic-dipole moment is indicated by them=1 Fourier amplitude (a 1 sin +b 1 cos ) of ctn on the source surface. Physical features (including the neutral line) on a prolate source surface intrinsically map to lower dipole latitudes atr1 AU in the heliosphere, and Ulysses observations of a unipolar field at latitudes beyond 30°S (when the neutral line on the source surface still reached 39°S) confirm the expected geometry.  相似文献   

15.
A technique to derive the coronal density irregularity factor , wheren is the electron density, has been proposed by Fineschi and Romoli (1993). This technique will exploit the unique UVCS capability of cotemporal and cospatial measurements of both UV line radiation and K-coronal polarized brightness,pB.The ratio of the measured H I Lyman (Ly-) line intensity to the resonant-scattering dominated H I Lyman (Ly-) intensity can be used to extract the collisional component of the Ly-. This component yields an estimate of . The quantity is then obtained from the UVCS white-light K-coronal measurements.We present simulated observations of the UVCS for coronal atmosphere models with different filling factors and electron density profiles, and for different coronal structures (e.g., coronal holes, streamers). These simulations will show how the proposed technique may be used to probe inhomogeneities of the solar corona.  相似文献   

16.
During a balloon flight of the MISO telescope on the 30th September 1979, the Seyfert galaxies NGC 4151 and MGC 8-11-11 were studied in the hard X-ray range (EX > 20 keV) and low-energy -ray range up to 19 MeV. An emission at the 4.5 level above 20 keV (4 above 260 keV) was detected in the direction of NGC 4151. -ray emission at the 3.9 level above 90 keV was also observed from the direction of MCG 8-11-11. The emission photon spectrum shows a high-energy cutoff at about 3 MeV. A large amount of the observed low-energy -ray diffuse background could be produced by a few percent of the X-ray emitting Seyfert galaxies having a -ray luminosity comparable to that observed from the regions of NGC 4151 or MCG 8-11-11.  相似文献   

17.
We review work on diffusion coefficients of energetic particles with an attempt to extract implications on their behaviour at high latitudes. In the ecliptic plane results from solar energetic particle propagation between the Sun and about 5 AU can be described by an effective radial mean free path r which is approximately constant as a function of distancer. When particle propagation in three dimensions in the heliosphere is considered it is not sufficient to consider r only. Jovian electrons can be used as probes to determine the parameters of three-dimensional diffusion. In the polar regions diffusion is dominated by its parallel component. Some predictions how should vary with latitude are discussed. For different choices of this variation we present expectations for intensity-time profiles of solar particle events during the Ulysses polar passages.  相似文献   

18.
《Space Science Reviews》1989,49(1-2):125-138
The Gamma-1 telescope has been developed through a collaboration of scientists in the USSR and France in order to conduct -ray astronomical observations within the energy range from 50 to 5000 MeV. The major characteristics of the telescope were established by Monte-Carlo simulations and calibrations made with the aid of electron and tagged -ray beams produced by an accelerator, and these have been found to be as follows: the effective area for photons coming along the instrument's axis varies from about 50 cm2 at E = 50 MeV to approximately 230 cm2 at E 300 MeV; the angular resolution (half opening of the cone embracing 68% events) is equal to 2.7° at E = 100 MeV, and 1.8° at E = 300 MeV; the energy resolution (FWHM) varies from 70% to 35% as the energy of the detected photons increases from 100 to 550 MeV; the telescope's field-of-view at the half-sensitivity level is 300–450 square degrees depending upon the spectrum of the detected radiation, and the event selection logic. Proceeding from the thus obtained characteristics it is demonstrated that a point source producing a photon flux J (E 100 MeV) = 3 × 10-7 cm-2 s-1, can be detected with a 5 significance by observing it during 106 s at the level of the Cygnus background, and a source having intensity J (E 100 MeV) = 10-6 cm-2 s-1 can be detected to within a mean square positional accuracy of about 15.  相似文献   

19.
Gamow was one of the pioneers who studied the possible variability of fundamental physical constants. Some versions of modern Grand Unification theories do predict such variability. The paper is concerned with three of the constants: the fine-structure constant , the ratio of the proton massm p to the electron massm e, and the ratio of the neutron massm n tom e. It is shown on the basis of the quasar spectra analysis, that all the three constants revealed no statistically significant variation over the last 90% of the life time of the Universe. At the 2 significance level, the following upper bounds are obtained for the epoch corresponding to the cosmological redshiftsz2–3: /<1.5×10–3, m p/m p<2×10–3, and m/m<3×10–4, where x is a possible deviation of a quantityx from its present value,m=m p+m n, and the nucleon masses are in units ofm e. (According to new observational data which became known most recently, m p/m p<2×10–4) In addition a possible anisotropy of the high-redshift fine splitting over the celestial sphere is checked. Within the relative statistical error 3 < 1% the values of turned out to be the same in various quadrants of the celestial sphere, which corresponds to their equality in causally disconnected areas. However, at the 2 level a tentative anisotropy of estimated / values is found in directions that approximately coincide with the direction of the relic microwave background anisotropy.The revealed constraints serve as criteria for selection of those theoretical models which predict variation of ,m p orm n with the cosmological time.  相似文献   

20.
Energy coupling between the solar wind and the magnetosphere   总被引:13,自引:0,他引:13  
This paper describes in detail how we are led to the first approximation expression for the solar wind-magnetosphere energy coupling function , which correlates well with the total energy consumption rate U T of the magnetosphere. It is shown that is the primary factor which controls the time development of magnetospheric substorms and storms. The finding of this particular expression indicates how the solar wind couples its energy to the magnetosphere; the solar wind and the magnetosphere constitute a dynamo. In fact, the power P generated by the dynamo can be identified as by using a dimensional analysis. Furthermore, the finding of indicates that the magnetosphere is closer to a directly driven system than to an unloading system which stores the generated energy before converting it to substorm and storm energies. Therefore, the finding of and its implications have considerably advanced and improved our understanding of magnetospheric processes. The finding of has also led us to a few specific future problems in understanding relationships between solar activity and magnetospheric disturbances, such as a study of distortion of the solar current disk and the accompanying changes of . It is also pointed out that one of the first tasks in the energy coupling study is an improvement of the total energy consumption rate U T of the magnetosphere. Specific steps to be taken in this study are suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号