首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Observations of hard X-ray (HXR)/γ-ray continuum and γ-ray lines produced by energetic electrons and ions, respectively, colliding with the solar atmosphere, have shown that large solar flares can accelerate ions up to many GeV and electrons up to hundreds of MeV. Solar energetic particles (SEPs) are observed by spacecraft near 1 AU and by ground-based instrumentation to extend up to similar energies as in large SEP events, but it appears that a different acceleration process, one associated with fast coronal mass ejections is responsible. Much weaker SEP events are observed that are generally rich in electrons, 3He, and heavy elements. The energetic particles in these events appear to be similar to those accelerated in flares. The Ramaty high energy solar spectroscopic imager (RHESSI) mission provides high-resolution spectroscopy and imaging of flare HXRs and γ-rays. Such observations can provide information on the location, energy spectra, and composition of the flare accelerated energetic particles at the Sun. Here, preliminary comparisons of the RHESSI observations with observations of both energetic electron and ion near 1 AU are reviewed, and the implications for the particle acceleration and escape processes are discussed.  相似文献   

2.
Processes in the solar corona are prodigious accelerators of energetic ions, and electrons. The angular distribution, composition, and spectra of energetic particles observed near Earth gives information on the acceleration mechanisms. A class of energetic particle observations particularly useful in understanding the solar acceleration is the near-relativistic impulsive beam-like electron events. During five years of operation the Advanced Composition Explorer (ACE) has measured well over 400 electron events. Approximately 25% of these electron events are impulsive beam-like events that are released onto interplanetary field lines predominantly from western solar longitudes. We extend our initial 3 year study during the rise to solar maximum (Haggerty and Roelof, 2002; Simnett et al., 2002) to a five year statistical analysis of these beam-like energetic electron events in relationship to optical flares, microwave emission, soft X-ray emission, metric and decametric type-III radio bursts, and coronal mass ejections.  相似文献   

3.
By using radio data from ground-based telescopes (from 270 MHz to 25 MHz), and from the Radio and Plasma Wave experiment (WAVES) on board the WIND spacecraft (1–14 MHz and several kHz-11 MHz), as well as FY -2 satellite data, the origin of coronal and interplanetary shock and particle acceleration of the 14 July 2000 flare/CME event (the Bastille day event) have been studied. Main conclusions are as follows: (1) We investigate the causal relationship between metric type 11 bursts observed by the digital IZMIRAN radio spectrograph and type II radio emissions in the frequency range from 1–14 MHz and several kHz-11 MHz observed by the WAVES/WIND. The analysis indicate that the fast CME is the origin of both coronal and interplanetary shocks. (2)According to the time profiles of Hard X-ray, and energetic particles (include proton, 3He, and 4He) from FY-2 satellite, it is obvious that the Bastille day event is the event, in which both impulsive and gradual phenomena occur. The energetic particles accelerated not only in flare but also in CME.  相似文献   

4.
The energy content of nonthermal particles in solar flares is shared between accelerated electrons and ions. It isimportant for understanding the particle acceleration mechanism in solar flares. Yohkoh observed a few intense flares which produced both strong gamma-ray lines and electron bremsstrahlung continuum. We analyze energy spectra of X-class solar flares on October 27, 1991(X6.1), November 6, 1997 (X9.4), July 14, 2000 (X5.7) and November 24, 2000 (X2.3). The accelerated electron and proton spectra are derived from a spectral analysis of their high-energy photon emission and the energy contents in >1 MeV electrons and >10 MeV protons are estimated to be 6×l028 – 4×1030 and 2×1028 – 5×1029 erg, respectively. We study the flare to flare variation in the energy content of >1 MeV electrons and >10 MeV protons for the four Yohkoh gamma-ray flares. Ratios of >1 MeV electron energy content to >10 MeV proton energy content are roughly within an order of magnitude.  相似文献   

5.
The interplanetary space is not a passive medium, which merely constitutes a scene for the propagation of previously accelerated energetic particles, but influences the distribution of particles by changing their energies as well due to interactions with magnetic field inhomogeneities. Such processes manifest themselves in the energy spectra of solar energetic particle (SEP) events. In this paper the fluxes of protons with energies of 4–60 MeV are investigated on the basis of two data sets. Both sets are homogeneous, obtained by the CPME instrument aboard the IMP 8 satellite between 1974 and 2001. The first includes all SEP events where the integral fluxes of >4 MeV protons exceeded 2 particle/cm2 s sr. The other set consists of fluxes recorded in differential energy windows between 0.5 and 48 MeV. Important characteristics of SEP events include the rates of decrease of particle flux, which, as well as peak flux time, is an integral feature of the interplanetary medium within a considerable region, surrounding the observation point. The time intervals selected cover the decay phases of SEP events following flares, CMEs and interplanetary shocks of different origin. Only those parts of declines were selected, that could reasonably be described by exponential dependence, irrespective of the gradual/impulsive character of the events. It is shown that the average values of characteristic decay time, τ, and energy spectral index, γ, are all changing with the solar activity phase. Distributions of τ and γ values are obtained in SEPs with and without shocks and during different phases of events: just after peak flux and late after maximum.  相似文献   

6.
There is increasing evidence suggesting that coronal acceleration supplies at least part of the particles observed during solar energetic particle events, yet coronal processes tend to be mostly disregarded in these studies. This is often due to the fact that the coronal restructuring in the early development of the associated flare and/or coronal mass ejection event is extremely fast (on the order of a few minutes) and can encompass most of the solar disk, thus requiring a full disk solar imager with very high time-cadence, and wide spectral coverage. An important subset of the energetic particle events are the near-relativistic impulsive electron events detected near Earth: their onsets can be traced back to a release time in the low corona with accuracies on the order of a couple of minutes. We investigate a series of impulsive electron events from 1998 to 2001 using energetic electron data measured in situ by the Electron, Proton, and Alpha Monitor (EPAM) experiment on the Advanced Composition Explorer (ACE) spacecraft, and radio coronal observations from the Nanqay Radioheliograph, the Decametric Array from Nanqay and the WAVES experiment on the WIND spacecraft. EPAM measures electrons in the energy range from 40 to 300 keV over a wide range of look directions and with better than 1 minute time resolution, while the Nançay radioheliograph provides images of the solar corona at 5 different frequencies with time cadence of 8 images per second and per frequency. This study focuses on the events which correspond to a delay, between the inferred injection times of the electrons at the Sun, and the electromagnetic emissions from flares, of at least 5 minutes. Radio signatures are found near the estimated time of the electron release for each of the events. The timing and spectral characteristics of the radio emissions, when compared with the properties of the particles seen at EPAM, strongly support an acceleration process in the corona but at highly variable heights from one event to the other.  相似文献   

7.
Two successive solar energetic particle (SEP) events associated with fast and wide coronal mass ejections (CMEs) on 2001 April 14 and 15 are compared. The weak SEP event of April 14 associated with an 830 km/s CME and an M1.0 flare was the largest impulsive event of cycle 23. The April 15 event, the largest ground level event of cycle 23, was three orders of magnitude more intense than the April 14th event and was associated with a faster CME (1200 km/s) and an X14.4 flare. We compiled and compared all the activities (flares, CMEs, interplanetary conditions and radio bursts) associated with the two SEP events to understand the intensity difference between them. Different coronal and interplanetary environments of the two events (presence of preceding CME and seed particles ahead of the April 15 event) may explain the intensity difference.  相似文献   

8.
Many physical processes precede and accompany the solar energetic particles (SEP) occurrence on the Earth’s orbit. Explosive energy release on the Sun gives rise to a flare and a coronal mass ejection (CME). X-ray and gamma emissions are believed to be connected with flares. Radio emission is signature of disturbances traveling through the corona and interplanetary space. Particles can gain energy both in the flare and the accompanying wave processes. The beginning of the SEP events has the advantage of being the phase most close to the time of acceleration. Influence of interplanetary transport is minimal in the case of first arriving relativistic solar protons recorded by ground based neutron monitors in so called ground-level enhancements (GLE). The early phase of the SEP events attracts attention of many scientists searching for the understanding of particle acceleration. However, they come to the opposite conclusions. While some authors find arguments for coronal mass ejections as a sole accelerator of SEPs, others prove a flare to be the SEP origin. Here, the circumstances of SEP generation for several GLEs of the 23rd solar cycle are considered. Timing of X-ray, CME, and radio emissions shows a great variety from event to event. However, the time of particle ejection from the Sun is closer to maximum of X-ray emission than to any other phenomena considered. No correlation is found between the particle fluxes and the CME characteristics.  相似文献   

9.
An overview is presented of electrons, protons and heavier ions (E > 20 keV) recorded by the energetic particle detector EPONA in the Comet Halley environment, 12–15 March, 1986. Pick-up ions were detected at distances of up to at least 7.5 × 106 km from the nucleus. Estimates of the energies that typical cometary ions may be expected to acquire from the solar wind pertaining at Encounter show that the pick-up process is insufficient to account for the energies of the particles detected. An additional mechanism must thus be postulated to account for the observed particle signatures. Preliminary correlations with magnetic and plasma wave data from other instruments suggest that the presence of MHD turbulence at several million kilometers upstream of the bowshock may have contributed to the acceleration of the first pick-up ions observed. The bowshock boundary (inbound) does not appear to have constituted a location where particle acceleration to high energies took place. Downstream of the shock boundary, hardening of the energy spectrum and the development of less anisotropic particle streaming was observed to occur when the spacecraft was in a turbulent environment 1 × 106 km from the nucleus. The waxing influence of mass loading as a mechanism for reducing energetic particle fluxes as well as the depletion of energetic ions due to their escape along open field lines and to charge exchange collision with neutrals in a progressively more stagnant solar wind, may be inferred in a regime (seen on the magnetometer data to be largely non-turbulent) traversed by the spacecraft from 5 × 105 km from the nucleus to within the magnetic pile-up region. A major burst of ions and electrons (not yet established to be of cometary origin) occurred when the spacecraft was close to the Contact Surface. A population of high energy electrons (from 180 keV to at least 300 keV) was detected for about one hour before Closest Approach and for several hours thereafter. Also an energetic beam of electrons was identified exiting from a location at about 1 × 106 km from the nucleus (outbound). Finally, differences between inbound and outbound particle signatures are described.  相似文献   

10.
Radial transport theory for inner radiation zone MeV He ions has been extended by combining radial diffusive transport, losses due to Coulomb friction and charge exchange reaction with local generation of 3He and 4He ions due to nuclear reactions taking place on the inner edge of the inner radiation zone. From interactions between high energy trapped protons and upper atmospheric constituents we have included a nuclear reaction yield helium flux source that was numerically derived from a nuclear reaction model originally developed at the Institute of Nuclear Researches of Moscow, Russia and implemented in the computer system at the University of Campinas, Brazil. Magnetospheric transport computations have been made covering the L-shell range L=1.0 to 1.6 and the resulting MeV He ion flux distributions show a strong influence of the local nuclear source mechanism on the inner zone energetic He ion content.  相似文献   

11.
We have modeled “gradual” solar energetic particle events through numerical simulations using a StochasticDifferential Equation (SDE) method. We consider that energetic particle events are roughly divided into two groups: (1) where the shock was driven by coronal mass ejections (CMEs) associated with large solar flares, and (2) where they have no related solar events apart from the CMEs. (The detailed classification of energetic particle events was discussed in our previous paper.) What we call “gradual” solar energetic particle events belong to the former group. Particles with energies greater than 10 MeV are observed within several hours after the occurrence of flares and CMEs in many gradual events. By applying the SDE method coupled with particle splitting to diffusive acceleration, we found that an injection of high energy particles is necessary for early enhancement of such a high-energy proton flux and that it should not be presumed that the solar wind particles act as the seed population.  相似文献   

12.
We present a comparative study of the properties of coronal mass ejections (CMEs) and flares associated with the solar energetic particle (SEP) events in the rising phases of solar cycles (SC) 23 (1996–1998) (22 events) and 24 (2009–2011) (20 events), which are associated with type II radio bursts. Based on the SEP intensity, we divided the events into three categories, i.e. weak (intensity < 1 pfu), minor (1 pfu < intensity < 10 pfu) and major (intensity ? 10 pfu) events. We used the GOES data for the minor and major SEP events and SOHO/ERNE data for the weak SEP event. We examine the correlation of SEP intensity with flare size and CME properties. We find that most of the major SEP events are associated with halo or partial halo CMEs originating close to the sun center and western-hemisphere. The fraction of halo CMEs in SC 24 is larger than the SC 23. For the minor SEP events one event in SC23 and one event in SC24 have widths < 120° and all other events are associated with halo or partial halo CMEs as in the case of major SEP events. In case of weak SEP events, majority (more than 60%) of events are associated with CME width < 120°. For both the SC the average CMEs speeds are similar. For major SEP events, average CME speeds are higher in comparison to minor and weak events. The SEP event intensity and GOES X-ray flare size are poorly correlated. During the rise phase of solar cycle 23 and 24, we find north–south asymmetry in the SEP event source locations: in cycle 23 most sources are located in the south, whereas during cycle 24 most sources are located in the north. This result is consistent with the asymmetry found with sunspot area and intense flares.  相似文献   

13.
We present a model for composition of heavy ions in the solar energetic particles (SEP). The SEP composition in a typical large solar particle event reflects the composition of the Sun, with adjustments due to fractionation effects which depend on the first ionization potential (FIP) of the ion and on the ratio of ionic charge to mass (Q/M). Flare-to-flare variations in composition are represented by parameters describing these fractionation effects and the distributions of these parameters are presented.  相似文献   

14.
A current serious limitation on the studies of solar energetic particle (SEP) events is that their properties in the inner heliosphere are studied only through in situ spacecraft observations. Our understanding of spatial distributions and temporal variations of SEP events has come through statistical studies of many such events over several solar cycles. In contrast, flare SEPs in the solar corona can be imaged through their radiative and collisional interactions with solar fields and particles. We suggest that the heliospheric SEPs may also interact with heliospheric particles and fields to produce signatures which can be remotely observed and imaged. A challenge with any such candidate signature is to separate it from that of flare SEPs. The optimum case for imaging high-energy (E > 100 MeV) heliospheric protons may be the emission of π0-decay γ-rays following proton collisions with solar wind (SW) ions. In the case of E > 1 MeV electrons, gyrosynchrotron radio emission may be the most readily detectible remote signal. In both cases we may already have observed one or two such events. Another radiative signature from nonthermal particles may be resonant transition radiation, which has likely already been observed from solar flare electrons. We discuss energetic neutrons as another possible remote signature, but we rule out γ-ray line and 0.511 MeV positron annihilation emission as observable signatures of heliospheric energetic ions. We are already acquiring global signatures of large inner-heliospheric SW density features and of heliosheath interactions between the SW and interstellar neutral ions. By finding an appropriate observable signature of remote heliospheric SEPs, we could supplement the in situ observations with global maps of energetic SEP events to provide a comprehensive view of SEP events.  相似文献   

15.
We discuss a class of microwave flares whose source regions exhibit a distinctive spatial configuration; the primaryenergy release in these flares results from the interaction between emerging magnetic flux and an existing overlying region. Such events typically exhibit radio, X-ray and EUV emission at the main flare site (the site of interaction) and in addition radio emission at a remote site up to 1 × 105 km away in another active region. We have identified and studied more than a dozen microwave flares in this class, in order to arrive at some general conclusions on reconnection and energy release in such solar flares. Typically, these flares show a gradual rise showing many subsidiary peaks in both radio and hard X-ray light curves with a quasi-oscillatory nature with periods of 5–6 seconds, a bright compact X-ray & EUV emitting loop in the main flare source, a delay of the radio emission from the remote source relative to the main X-ray-emitting source. The magnetic field in the main flare site changes sharply at the time of the flare, and the remote site appears to be magnetically connected to the main flare site.  相似文献   

16.
We report the first 3+1 dimensional model development for energetic atomic oxygen ions in the Earth's radiation belts. Energetic Oxygen ions cans be supplied to the Earth's Inner magnetosphere from the sun (as a component of solar wind and solar energetic particles), from anomalous cosmic rays, and from acceleration processes acting on ionospheric atomic oxygen ions. We have built a multi-dimensional oxygen ion model in the following free parameters: geomagnetic L-shell, the magnetic moment, the second adiabatic invariant, and the discrete charge state number. Quiet time, steady state oxygen ion distributions have been obtained numerically from an assumed outer radiation zone boundary condition at L=7, average values of the radial diffusion coefficients, and standard values for the exospheric neutral densities due to the MSIS-86 upper atmosphere and exosphere neutral thermal particle density model. Average distributions of free electrons in the plasmasphere were also assumed with a mean plasmapause location just beyond L=4. We included the six lowest ionic charge states of atomic oxygen (16O) based on an existing charge exchange cross section compilation by Spjeldvik and Fritz (1978). Computed oxygen ion distributions include the resulting equilibrium structure of energy oxygen ions between 10 KeV and 100 MeV.  相似文献   

17.
The precipitation of solar energetic particles, protons as well as electrons, at high latitudes is commonly assumed to be homogeneous across both polar caps. Using Low-Earth Orbit POES (Polar Orbiting Environmental Satellites) we determine particle penetration ratios into the polar atmosphere for protons ranging from about 0.1 MeV to 500 MeV and for electrons spanning about one order of magnitude in energy with a maximum of 0.3 MeV. Based on power law fits for the POES spectrum we show, that for energies interesting for middle and lower atmosphere chemistry, particle flux over the poles is comparable in magnitude to flux at the geostationary orbit or at L1 in interplanetary space. The time period under study are the solar energetic particle (SEP) event series of October/November 2003 and January 2005.  相似文献   

18.
太阳耀斑显著的热和非热事件的统计特征   总被引:1,自引:1,他引:0  
本文利用GOES卫星和SMM卫星软、硬X射线耀斑观测资料,分析耀斑中软、硬X射线辐射流量的分布,发现太阳耀斑存在着显著的热事件(PT事件)和显著的非热事件(PNT事件),它们主要特征是:(1)PT事件为缓变型耀斑,PNT事件为脉冲型耀斑;(2)PT事件的硬X射线谱较软,PNT事件能谱较硬;(3)PNT事件非热能量释放速率比PT事件快3—10倍;(4)耀斑发展趋缓慢,PT事件中软X射线峰值流量越大;(5)耀斑中PNT事件约占60%,PT事件约占40%.最后定性讨论了产生PT和PNT事件的可能机制.   相似文献   

19.
During extreme solar events such as big flares or/and energetic coronal mass ejections (CMEs) high energy particles are accelerated by the shocks formed in front of fast interplanetary coronal mass ejections (ICMEs). The ICMEs (and their sheaths) also give rise to large geomagnetic storms which have significant effects on the Earth’s environment and human life. Around 14 solar cosmic ray ground level enhancement (GLE) events in solar cycle 23 we examined the cosmic ray variation, solar wind speed, ions density, interplanetary magnetic field, and geomagnetic disturbance storm time index (Dst). We found that all but one of GLEs are always followed by a geomagnetic storm with Dst  −50 nT within 1–5 days later. Most(10/14) geomagnetic storms have Dst index  −100  nT therefore generally belong to strong geomagnetic storms. This suggests that GLE event prediction of geomagnetic storms is 93% for moderate storms and 71% for large storms when geomagnetic storms preceded by GLEs. All Dst depressions are associated with cosmic ray decreases which occur nearly simultaneously with geomagnetic storms. We also investigated the interplanetary plasma features. Most geomagnetic storm correspond significant periods of southward Bz and in close to 80% of the cases that the Bz was first northward then turning southward after storm sudden commencement (SSC). Plasma flow speed, ion number density and interplanetary plasma temperature near 1 AU also have a peak at interplanetary shock arrival. Solar cause and energetic particle signatures of large geomagnetic storms and a possible prediction scheme are discussed.  相似文献   

20.
Using data from the Solar Isotope Spectrometer on the Advanced Composition Explorer obtained during 36large solar energetic particle events (SEPs) that occurred during 1997–2002 we have examined the spectral characteristics of oxygen and iron. Based on the shape of the oxygen spectrum during the decay phase following the peak in particle intensity, each SEP event was categorized as either exponential (7 events) or power law (29 events). We find that the exponential events were typically the larger events (in terms of peak oxygen intensity) and had Fe/0 ratios that strongly decreased with increasing energy.Event-averaged Fe/0 ratios (integrated over 12 to 60 MeV/nucleon) were at or below coronal abundances for nearly all these events, while the ratios obtained in the power law events were typically enhanced over coronal values. The majority of the power law events had the same spectral index for both 0 and Fe resulting in an Fe/0 ratio independent of energy. However 6 of the 29 power law events had Fe/0 ratios that increased with increasing energy due to an Fe spectral index less negative than that of 0. We consider simple diffusion theory in an effort to understand the nature of these events and obtain preliminary but promising results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号