首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 647 毫秒
1.
NASA's COST LESS Team is pursuing strategies to reduce the cost and complexity of planning and executing space missions. The team's technical goal is to reverse the trend of constructing unique solutions for similar problems. To this end, the team is exploring ways to represent mission functionality in terms of building blocks and is discovering approaches that could accommodate the same building blocks for seemingly disparate activities, such as organizing processed telemetry data, controlling onboard experiments, searching science archives, reducing and presenting information to science users, and supporting educational outreach. Reusable object technology (UOT), a research undertaking by the authors, is showing promise in recognizing similarities in functions which were previously viewed as unique because they appeared in different programs or mission phases. Since UOT is aimed at being implementation independent (i.e. the function performed could be accomplished manually, by an automated process, by a specialized instrument, etc.), no premature judgment for automation or autonomy need be made. In this paper, the authors attempt to strike a balance between theory and reality as they describe UOT, including its beginnings, its underpinning, its utility, and its potential for achieving substantive reductions in cost and complexity for the Agency's space programs. The authors discuss their collaboration with the Center for EUV Astrophysics, University of California, Berkeley to reduce the cost and complexity of science investigations. Their multi-disciplinary plan incorporates both UOT and a complementary technology introduced in this paper, called interactive archives.  相似文献   

2.
The current emphasis on smaller, faster, cheaper (SFC) spacecraft in NASA’s solar system exploration program is the product of a number of interacting – even interdependent – factors. The SFC concept as applied to NASA’s solar system exploration program can be viewed as the vector sum of (1) the space science community’s desire for more frequent planetary missions to plug the data gaps, educate the next generation of scientists, provide missions to targets of opportunity, and enable programmatic flexibility in times of budgetary crisis; (2) the poor publicity garnered by NASA in the early 1990s and the resultant atmosphere of public criticism (creating an opportunity for reform); (3) The Strategic Defense Initiative Organization’s and the National Space Council community’s desire to advance the Space Exploration Initiative and their perception that the NASA culture at the time represented a barrier to the effective pursuit of space exploration; (4) the effective leadership of NASA Administrator Daniel Goldin; and (5) the diminishing budget profile for space sciences in the early 1990s. This paper provides a summary of the origin of the smaller, faster, cheaper approach in the planetary program. A more through understanding of the history behind this policy will enable analysts to assess more accurately the relative successes and failures of NASA’s new approach to solar system exploration.  相似文献   

3.
Despite several decades of research and refinement in cost estimating tools and practices, the final cost of US space programs continues to exceed initial cost estimates by an average of more than 45%. Thus, program cost models not only exhibit error, they are seriously biased. A structured review surveyed techniques, approaches, models and conceptual tools related to space program cost estimating, to understand cost in complex space systems. Analysis shows problems of cost estimating result from the growing complexity of space programs, failures in managing growth, and mission failures. Although there is greater expectation for the models to accurately predict program costs, the current models used for seeking funding for large space programs are inadequate due to (1) inability to predict future, (2) lack of insight, and (3) process replaces judgment in decision making.  相似文献   

4.
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission used six planetary gravity assists in order to enable capture into orbit about Mercury. A key element of MESSENGER's successful trajectory was achieving the proper gravity assist from each planetary flyby. The criticality of the MESSENGER gravity assists levied tight accuracy requirements on the planetary-flyby targeting. Major errors could have precluded Mercury orbit insertion or required modifications to the trajectory that increased mission complexity, cost, and risk by requiring additional Mercury flybys and extending mission duration. Throughout the mission, MESSENGER modified its strategy for achieving accurate planetary flybys. By using solar sailing, the MESSENGER team was able to eliminate all of the flyby approach maneuvers without sacrificing flyby accuracy, thereby saving mission ΔV margin. The elimination of these approach maneuvers also markedly reduced mission risk, as these approach maneuvers were nominally planned during a time of heightened sensitivity to errors and precluded unique flyby science opportunities. The paradigm shift used by MESSENGER may be useful for other interplanetary missions, particularly if their trajectories require gravity assists in the inner solar system.  相似文献   

5.
Space science missions are increasingly challenged today: in ambition, by increasingly sophisticated hypotheses tested; in development, by the increasing complexity of advanced technologies; in budgeting, by the decline of flagship-class mission opportunities; in management, by expectations for breakthrough science despite a risk-averse programmatic climate; and in planning, by increasing competition for scarce resources. How are the space-science missions of tomorrow being formulated? The paper describes the JPL Innovation Foundry, created in 2011, to respond to this evolving context. The Foundry integrates methods, tools, and experts that span the mission concept lifecycle. Grounded in JPL's heritage of missions, flight instruments, mission proposals, and concept innovation, the Foundry seeks to provide continuity of support and cost-effective, on-call access to the right domain experts at the right time, as science definition teams and Principal Investigators mature mission ideas from “cocktail napkin” to PDR. The Foundry blends JPL capabilities in proposal development and concurrent engineering, including Team X, with new approaches for open-ended concept exploration in earlier, cost-constrained phases, and with ongoing research and technology projects. It applies complexity and cost models, project-formulation lessons learned, and strategy analyses appropriate to each level of concept maturity. The Foundry is organizationally integrated with JPL formulation program offices; staffed by JPL's line organizations for engineering, science, and costing; and overseen by senior Laboratory leaders to assure experienced coordination and review. Incubation of each concept is tailored depending on its maturity and proposal history, and its highest-leverage modeling and analysis needs.  相似文献   

6.
NASA’s Discovery, Explorer, and Mars Scout mission lines have demonstrated over the past 15 years that, with careful planning, flexible management techniques, and a commitment to cost control, small space science missions can be built and launched at a fraction of the price of strategic missions. Many credit management techniques such as co-location, early contracting for long-lead items, and a resistance to scope creep for this, but it is also important to examine what may be the most significant variable in small mission implementation: the roles and the relationship of the principal investigator, responsible to NASA for the success of the mission, and the project manager, responsible for delivering the mission to NASA. This paper reports on a series of 55 oral histories with principal investigators, project managers, co-investigators, system engineers, and senior management from nearly every competitively selected Discovery mission launched to date that discuss the definition and evolution of these roles and share revealing insights from the key players themselves. The paper will show that there are as many ways to define the principal investigator/project manager relationship as there are missions, and that the subtleties in the relationship often provide new management tools not practical in larger missions.  相似文献   

7.
The tether assisted re-entry of small payloads is a highly interesting tool for space transportation especially for the return of small payloads from Space Station ISSA. The small tether mission Rapunzel was initiated in 1991 by the Institute of Astronautics, TU München and the Kayser-Threde Company, to design a low cost and feasible tether experiment for the verification of the tether assisted re-entry. Together with the Samara State Aerospace University, Russia, a mission concept on a Russian Resurs or Photon capsule was developed. Based on this mission a deployer has been designed, mainly based on technology of the textile industry, which insures high reliability at low cost. Recently a similar configuration is being discussed for the ESA-TSE mission.The main work during the recent time was the development and test of the breadboard model of the deployer system. After successfully completing initial ground tests with the deployer, further tests during the ESA Parabolic Flight campaign in November 1995 were conducted. After a short introduction of the overall mission scenario, the planned configuration in orbit, this paper will present the results of the microgravity test campaign onboard the KC-135 aircraft and compare them with the ground test. The deployer showed a good performance during all tests, including ejection of the end-mass, deployment, and braking. Problems that occurred during the tests will be discussed, and solutions for the detected flaws and the results of the redesign now in progress will be presented. These verifications have shown the feasibility of the concept and will lay the base for the planned development of the flight model of the deployer.  相似文献   

8.
In the past, one of the major problems in performing scientific investigations in space has been the high cost of developing, integrating, and transporting scientific experiments into space. The limited resources of unmanned spacecraft, coupled with the requirements for completely automated operations, was another factor contributing to the high costs of scientific research in space. In previous space missions after developing, integrating and transporting costly experiments into space and obtaining successful data, the experiment facility and spacecraft have been lost forever, because they could not be returned to earth. The objective of this paper is to present how the utilization of the Spacelab System will result in cost benefits to the scientific community, and significantly reduce the cost of space operations from previous space programs.The following approach was used to quantify the cost benefits of using the Spacelab System to greatly reduce the operational costs of scientific research in space. An analysis was made of the series of activities required to combine individual scientific experiments into an integrated payload that is compatible with the Space Transportation System (STS). These activities, including Shuttle and Spacelab integration, communications and data processing, launch support requirements, and flight operations were analyzed to indicate how this new space system, when compared with previous space systems, will reduce the cost of space research. It will be shown that utilization of the Spacelab modular design, standard payload interfaces, optional Mission Dependent Equipment (MDE), and standard services, such as the Experiment Computer Operating System (ECOS), allow the user many more services than previous programs, at significantly lower costs. In addition, the missions will also be analyzed to relate their cost benefit contributions to space scientific research.The analytical tools that are being developed at MSFC in the form of computer programs that can rapidly analyze experiment to Spacelab interfaces will be discussed to show how these tools allow the Spacelab integrator to economically establish the payload compatibility of a Spacelab mission.The information used in this paper has been assimilated from the actual experience gained in integrating over 50 highly complex, scientific experiments that will fly on the Spacelab first and second missions. In addition, this paper described the work being done at the Marshall Space Flight Center (MSFC) to define the analytical integration tools and techniques required to economically and efficiently integrate a wide variety of Spacelab payloads and missions. The conclusions reached in this study are based on the actual experience gained at MSFC in its roles of Spacelab integration and mission managers for the first three Spacelab missions. The results of this paper will clearly show that the cost benefits of the Spacelab system will greatly reduce the costs and increase the opportunities for scientific investigation from space.  相似文献   

9.
Space programs support experimental investigations related to the unique environment of space and to the technological developments from many disciplines of both science and engineering that contribute to space studies. Furthermore, interactions between scientists, engineers and administrators, that are necessary for the success of any science mission in space, promote interdiscipline communication, understanding and interests which extend well beyond a specific mission. NASA-catalyzed collaborations have benefited the spinal cord rehabilitation program at UCLA in fundamental science and in the application of expertise and technologies originally developed for the space program. Examples of these benefits include: (1) better understanding of the role of load in maintaining healthy muscle and motor function, resulting in a spinal cord injury (SCI) rehabilitation program based on muscle/limb loading; (2) investigation of a potentially novel growth factor affected by spaceflight which may help regulate muscle mass; (3) development of implantable sensors, electronics and software to monitor and analyze long-term muscle activity in unrestrained subjects; (4) development of hardware to assist therapies applied to SCI patients; and (5) development of computer models to simulate stepping which will be used to investigate the effects of neurological deficits (muscle weakness or inappropriate activation) and to evaluate therapies to correct these deficiencies.  相似文献   

10.
《Acta Astronautica》2009,64(11-12):1305-1311
FORMOSAT-2 is Taiwan's first remote sensing satellite (RSS). It was launched on 20 May 2004 with five-year mission life and a very unique mission orbit at 891 km altitude. This orbit gives FORMOSAT-2 the daily revisit feature and the capability of imaging the Arctic and Antarctic regions due to the high enough altitude. For more than three years, FORMOSAT-2 has performed outstanding jobs and its global effectiveness is evidenced in many fields such as public education in Taiwan, Earth science and ecological niche research, preservation of the world heritages, contribution to the International Charter: space and major disasters, observation of suspected North Korea and Iranian nuclear facilities, and scientific observation of the atmospheric transient luminous events (TLEs). In order to continue the provision of earth observation images from space, the National Space Organization (NSPO) of Taiwan started to work on the second RSS from 2005. This second RSS will also be Taiwan's first indigenous satellite. Both the bus platform and remote sensing instrument (RSI) shall be designed and manufactured by NSPO and the Instrument Technology Research Center (ITRC) under the supervision of the National Applied Research Laboratories (NARL). Its onboard computer (OBC) shall use Taiwan's indigenous LEON-3 central processing unit (CPU). In order to achieve cost effective design, the commercial off the shelf (COTS) components shall be widely used. NSPO shall impose the up-screening/qualification and validation/verification processes to ensure their normal functions for proper operations in the severe space environments.  相似文献   

11.
Globalization is creating an interdependent space-faring world and new opportunities for international partnerships that strengthen space knowledge development and transfer. These opportunities have been codified in the Global Exploration Strategy, which endorses the “inspirational and educational value of space exploration” [1]. Also, during the 2010 Heads of Space Agencies Summit celebrating the International Academy of Astronautics’ (IAA) 50th Anniversary, space-faring nations from across the globe issued a collective call in support of robust international partnerships to expand the frontiers of space exploration and generate knowledge for improving life on Earth [2].Educators play a unique role in this mission, developing strategic partnerships and sharing best educational practices to (1) further global understanding of the benefits of space exploration for life on Earth and (2) prepare the next generation of scientists required for the 21st Century space workforce. Educational Outreach (EO) programs use evidence-based, measurable outcomes strategies and cutting edge information technologies to transfer space-based science, technology, engineering and mathematics (STEM) knowledge to new audiences; create indigenous materials with cultural resonance for emerging space societies; support teacher professional development; and contribute to workforce development initiatives that inspire and prepare new cohorts of students for space exploration careers. The National Space Biomedical Research Institute (NSBRI), the National Aeronautics and Space Administration (NASA) and Morehouse School of Medicine (MSM) have sustained a 13-year space science education partnership dedicated to these objectives.This paper briefly describes the design and achievements of NSBRI's educational programs, with special emphasis on those initiatives' involvement with IAA and the International Astronautical Congress (IAC). The IAA Commission 2 Draft Report, Space for Africa, is discussed as a model for developing sustainable partnerships and indigenous programs that support Africa's steady emergence as a global space-faring force. The IAC will provide timely: 2011 South Africa will provide timely feedback to refine that report's strategies for space life sciences education and public engagement in Africa and around the globe.  相似文献   

12.
Scott Pace 《Space Policy》2011,27(3):127-130
China has engaged in a steady, long-standing effort to build and strengthen its space capabilities, achieving progressively more ambitious milestones and staking its claim as a major space power. It is also increasingly engaging in cooperative efforts. A number of issues must be weighed, however, before the USA should consider any collaboration with it. These include the essentially military nature of China’s space program, the fact that China’s intentions in space and decision-making process are far from ‘transparent’, and the way it uses its space activities to pursue foreign policy goals. While the latter could be useful in, e.g., reducing tensions on the Korean peninsular through a space-services-for-giving-up-missiles tradeoff, and while there is scope for collaboration in space science missions, there are no compelling reasons for the USA to pursue cooperation in human spaceflight with China.  相似文献   

13.
China's space policy and its purpose have become an increasingly contentious subject. This paper critically examines the claims, made by Ashley Tellis, among others, that China has a space strategy decided and coordinated by the Chinese military and dedicated to defeating superior US power locally in an asymmetrical war, and that it is this military space strategy that drives China's single-minded pursuit of space science and technology and the development of China's space programme. To do so, the paper conducts two investigations: into the declining role of the Chinese military in China's foreign and security policy making and its limited influence in formulating China's grand strategy; and the other into the contingent history of China's two space programs, Shenzhou and Chang'e, which have largely been driven by civilian scientist communities, rather than the military. In so doing, I argue that the claims of China's ‘military space strategy’ are over-imaginative and serve a particular political purpose. The social imaginary of a threatening China produced by the US strategic gaze at China in space, I further argue, has dangerous policy implications.  相似文献   

14.
As well as providing practical information on Earth-besetting problems, space science and exploration are vital tools for capturing the public imagination and encouraging young people's interest in space. The relatively small scale of some scientific instruments also allows mission participation by developing countries. Citing the work of the UN and various NGOs in promoting study and distribution of space science data, the authors recommend that it be given a higher profile and suggest a number of projects -- the Mars drill study in Egypt, refurbishment of a telescope facility in Sri Lanka -- involving developing countries that should be followed up, as well as listing ongoing successful projects. The UN is urged to continue its annual workshops on space science (apparently under threat) and to ensure its inclusion in the forthcoming UNISPACE III Conference.  相似文献   

15.
《Acta Astronautica》2003,52(2-6):211-218
Aladdin, one of five Concept Study winners for NASA's Discovery AO98-OSS-04, was a mission to obtain samples from the two Martian moons using several unique mission design and sample collection techniques. The mission design enabled sample return from two bodies at the relatively low cost of a Discovery-class mission. It featured a phasing orbit, multiple flybys of the Martian moons, and a short overall mission duration. The phasing orbit greatly reduced the post-launch Δv requirement, thus permitting the use of a Delta II launch vehicle. Multiple moon flybys provided ample opportunities for sample collection and science observations. The short overall mission duration reduced program costs. Aladdin's sample collection, unlike traditional sample collection methods, used a “launch-and-catch” technique to obtain samples. Projectiles would be launched to the moon's surface during a close flyby and the ejected particles gathered for Earth return and analysis. This innovative technique, the Aladdin mission, and the possible extension of the technique to other bodies are described.  相似文献   

16.
Li Chengzhi 《Space Policy》2011,27(3):157-164
Using the US-coined concept of space industrialization and reflecting the ongoing creation of a space economy, this paper maintains that China’s 20-odd years of practice and achievement in crop breeding in space should be seen as an integral part of any space economy. The paper analyzes the Chinese government’s space breeding policies, its support for it via financial allocation, and the relevant programs, and highlights the key achievements so far achieved in the sector. In conclusion, it outlines the main hurdles to crop breeding in space but looks forward to a bright future for this activity.  相似文献   

17.
《Acta Astronautica》2007,60(4-7):599-606
The National Space Biomedical Research Institute (NSBRI) Education and Public Outreach Program (EPOP) is supporting the National Aeronautics and Space Administration's (NASA) new vision for space exploration by educating and inspiring the next generation of students through a seamless pipeline of kindergarten through postdoctoral education programs. NSBRI EPOP initiatives are designed to train scientists and to communicate the significance of NSBRI science, as well as other space exploration science, to schools, families and lay audiences. The NSBRI EPOP team is comprised of eight main partners: Baylor College of Medicine (BCM), Binghamton University–State University of New York (BUSUNY), Colorado Consortium for Earth and Space Science Education (CCESSE), Massachusetts Institute of Technology (MIT), Morehouse School of Medicine (MSM), Mount Sinai School of Medicine (MSSM), Rice University and the University of Texas Medical Branch (RU–UTMB), and Texas A&M University (TAMU). The current kindergarten through undergraduate college (K-16) team, which was funded through an open national competition in 2004, consolidates the past 7 years of K-16 education activities and expands the team's outreach activities to more museums and science centers across the nation. NSBRI also recently expanded its education mission to include doctoral and postdoctoral level programs. This paper describes select K-16 EPOP activities and products developed over the past 7 years, and reports on new activities planned for the next 3 years. The paper also describes plans for a doctoral program and reports on 1st-year outcomes of the new postdoctoral program.  相似文献   

18.
The National Space Biomedical Research Institute (NSBRI) is supporting the National Aeronautics and Space Administration's (NASA) education mission through a comprehensive Education and Public Outreach Program (EPOP) that communicates the excitement and significance of space biology to schools, families, and lay audiences. The EPOP is comprised of eight academic institutions: Baylor College of Medicine, Massachusetts Institute of Technology, Morehouse School of Medicine, Mount Sinai School of Medicine, Texas A&M University, University of Texas Medical Branch Galveston, Rice University, and the University of Washington. This paper describes the programs and products created by the EPOP to promote space life science education in schools and among the general public. To date, these activities have reached thousands of teachers and students around the US and have been rated very highly.  相似文献   

19.
This paper presents the practice of the artist/researcher Ioannis Michaloudis. It showcases his use of a space technology nanomaterial, silica aerogel, and its potential in the cultural utilization of space. Since 2001, his projects have centered around the esthetic, sculptural and conceptual use of silica aerogel. For Michaloudis, this material is highly allegorical of what he terms ‘our breaking sky’. For the authors, the step towards space is a real ‘bridge moment’, analogous to the evolutionary progression of organisms from water to earth. In this current era of space exploration, it is clear that humans need to develop new organs and survival skills – or, cultivate new skies in response to the breaking of our atmosphere?s dome. It is also clear that science and art need to collaborate more productively. To this end, it is argued that allegory provides the link between imaginability, experiment and representation in both scientific and artistic practices. Etherospermia (εθεροσπερμ?α) is an invented word from ether and panspermia. The Etherospermia project pursues, allegorically, the creation of new atmospheres on other planets, in order to draw attention to the degradation and destruction of the earth?s protective veil. Imagine an astronaut who, during a space walk, scatters fragments of Michaloudis? silica aerogel as seed material to alter the atmospheres of other planets, making them habitable. The paper discusses nine artworks as a way of presenting the conceptual core of the etherospermia allegory.  相似文献   

20.
In order to meet the growing global requirement for affordable missions beyond Low Earth Orbit, two types of platform are under design at the Surrey Space Centre. The first platform is a derivative of Surrey's UoSAT-12 minisatellite, launched in April 1999 and operating successfully in-orbit. The minisatellite has been modified to accommodate a propulsion system capable of delivering up to 1700 m/s delta-V, enabling it to support a wide range of very low cost missions to LaGrange points, Near-Earth Objects, and the Moon. A mission to the Moon - dubbed “MoonShine” - is proposed as the first demonstration of the modified minisatellite beyond LEO. The second platform - Surrey's Interplanetary Platform - has been designed to support missions with delta-V requirements up to 3200 m/s, making it ideal for low cost missions to Mars and Venus, as well as Near Earth Objects (NEOs) and other interplanetary trajectories. Analysis has proved mission feasibility, identifying key challenges in both missions for developing cost-effective techniques for: spacecraft propulsion; navigation; autonomous operations; and a reliable safe mode strategy. To reduce mission risk, inherently failure resistant lunar and interplanetary trajectories are under study. In order to significantly reduce cost and increase reliability, both platforms can communicate with low-cost ground stations and exploit Surrey's experience in autonomous operations. The lunar minisatellite can provide up to 70 kg payload margin in lunar orbit for a total mission cost US$16–25 M. The interplanetary platform can deliver 20 kg of scientific payload to Mars or Venus orbit for a mission cost US$25–50 M. Together, the platforms will enable regular flight of payloads to the Moon and interplanetary space at unprecedented low cost. This paper outlines key systems engineering issues for the proposed Lunar Minisatellite and interplanetary Platform Missions, and describes the accommodation and performance offered to planetary payloads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号