首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
激光增材制造技术在航空航天领域的应用与发展   总被引:2,自引:0,他引:2  
在简要阐述激光增材制造技术原理和特点基础上,介绍其在航空航天领域应用的主要工艺:激光熔化沉积(Laser Melting Deposition,LMD)技术、激光选区熔化(Selective Laser Melting,SLM)技术,归纳了增材制造材料体系及其在航空航天领域的具体应用,并探讨了激光增材制造技术的研究现状和发展趋势。  相似文献   

2.
增材制造——面向航空航天制造的变革性技术   总被引:1,自引:0,他引:1  
增材制造技术在航空航天应用方面具有单件小批量的复杂结构快速制造优势,未来将向着设计、材料和成形一体化方向发展。分析了增材制造在航空航天领域应用发展的3个层面,以航空发动机涡轮叶片增材制造、高性能聚醚醚酮(PEEK)及其复合材料、连续纤维增强树脂复合材料及太空3D打印为主题,介绍了增材制造技术国内外以及西安交通大学的研究状况。涡轮叶片应用增材制造工艺可以有效提高效率降低成本,未来向高性能的高温合金和陶瓷基复合材料增材制造技术发展。高性能轻质聚合物PEEK及其复合材料增材制造在高力学性能结构件、吸波功能件的成形中得到应用,将改变现有的设计与材料,推动结构与功能一体化发展。连续纤维复合材料增材制造将带动无模具纤维复合材料成形的新发展,在太空3D打印将改变未来航空航天制造模式。增材制造技术将给航空航天制造技术带来变革性发展。  相似文献   

3.
曹龙超  周奇  韩远飞  宋波  聂振国  熊异  夏凉 《航空学报》2021,42(10):524790-524790
激光选区熔化(SLM)技术被认为是最有应用前景的增材制造技术之一,已应用于航空航天、医疗器械等领域。然而,如何确保构件质量的可靠性和制造的可重复性是SLM面临的最大挑战,已被认为是限制SLM及其他金属增材制造技术发展和工业应用的最大壁垒。其中,主要原因是SLM过程中会产生难以控制的缺陷。因此,对SLM进行过程监测和实时反馈控制是解决这一挑战的重要研究方向,也已成为学术界和工业界的研究热点之一。通过对近十年该领域的文献调研,综述了金属激光增材制造中常见的冶金缺陷及其产生机理,对金属增材制造过程产生的信号及其监测手段,如声信号、光信号及热信号等进行了详细描述;总结了信号数据的处理方法,包括传统的统计处理方法和新兴的基于机器学习的智能监测方法;随后,综述了金属增材制造过程的质量控制方法,包括非闭环控制和闭环控制,并对全文进行了总结,展望了未来SLM智能监测和控制领域值得深入的研究方向。  相似文献   

4.
激光增材制造技术的研究现状及发展趋势   总被引:6,自引:0,他引:6  
增材制造技术能够快速将复杂结构的三维数据模型直接转化为实体零部件,是一种快速发展的数字化制造技术.激光增材制造技术是增材制造技术中最具代表性的一类,在增材制造技术领域扮演着重要的角色.主要介绍了两种典型的激光增材制造技术:激光选区熔化(Selective Laser Melting,SLM)技术和激光金属直接成形(Laser Metal Direct Forming,LMDF)技术的原理与特点,归纳了其发展和研究现状,指出了激光增材制造技术的发展趋势.  相似文献   

5.
随着航空航天技术的发展关键部件性能需求逐渐提高,单一材料部件已经无法满足严苛服役条件下的性能需求,而异种金属材料的直接近净成形制备是航空航天、国防及军工等关键领域研究的重点方向。目前传统异种金属材料制备面临加工工艺与材料物性匹配问题、界面缺陷控制以及一体化成形困难等诸多瓶颈,利用增材制造技术制备异种金属部件成为材料成形及增材制造领域的重要发展方向。本文介绍了定向能量沉积、激光选区熔化和电子束熔化在异种金属增材制造中的研究现状,对粉末铺放工艺、高能束与粉层适配性、全互溶合金析出相控制、非互溶材料高能束连接问题及界面成分分布控制进行了梳理与总结,并提出了解决方法。最后,对异种金属增材制造在航空航天领域的未来发展方向进行了展望。  相似文献   

6.
为将激光增材制造(LAM)技术更加广泛的应用于航天运载器结构设计与成形,基于激光选区熔化(SLM)现有成形能力,实现了航天运载器上面级舱体结构一体化设计。具体建立无连接件的整舱一体化模型,成形缩比一体化舱体产品,并通过静力试验验证了基于激光增材制造技术的一体化设计与成形方法的可行性,从而对其在航空航天领域推广应用的技术途径进行探索。  相似文献   

7.
激光选区熔化(SLM)增材制造技术常用于格栅、腔体结构、燃烧室组件等航空、航天、兵器领域复杂小型零件的制造.为了适应大尺寸零部件的制造,较为理想的方案是采用分段增材成形+拼焊连接的方案,针对SLM成形TC4钛合金进行了电子束焊接工艺验证研究,分析了SLM成形材料焊接气孔缺陷及其产生原因,探讨了不同焊接工艺对气孔缺陷的改...  相似文献   

8.
高温镍基合金在高温高压条件下具有高强度、优异的抗疲劳性能与蠕变特性,是航空航天领域中重要的高温合金材料之一。综述了基于粉末床激光熔化成形技术进行镍基高温合金零件快速制造的国内外研究进展,首先系统地介绍了成熟应用于金属3D打印技术和正处于研究开发中的高温镍基合金材料,接着总结了经SLM成形后高温镍基合金材料的微观组织结构与缺陷,以及相应热处理后零件的组织变化和力学性能特征。最后,进一步概述了SLM成形高温镍基合金零件热点科学问题。  相似文献   

9.
通过结合SLM对金属增材制造专业特殊过程认证审核单进行分析,以SLM成形AlSi10Mg制件进行模拟过程审查,识别认证关注点及常见不符合项,寻求工艺规范、技术控制等方面的持续改进方法 ,从而使增材制造技术工作系统化、规范化,进一步提升在增材制造领域的国际竞争力奠定基础。  相似文献   

10.
金属材料激光增材制造技术及在航空发动机上的应用   总被引:3,自引:0,他引:3  
<正>随着增材制造技术的不断发展及技术的不断突破,研制零件的力学性能、疲劳性能等不断提高,其在工业领域,特别是航空航天领域必将具有非常广阔的应用前景。金属材料增材制造技术及其特点金属材料增材制造技术,又称3D打印技术、激光快速成型技术,主要以金属粉末(尺寸小于1mm的金属颗粒群)、颗粒或金属丝材为原料,通过CAD模型预分层处理,采用高  相似文献   

11.
陶瓷零件因其强度高、密度低、耐高温及耐腐蚀等特点在航空航天领域具有广阔的应用前景。然而,陶瓷零件的传统制造方法存在周期长、成本高、依赖模具且难以制造复杂结构等问题,极大限制了陶瓷零件在航空航天领域的应用。增材制造技术是一种基于"离散-堆积"成型原理、由三维数据驱动直接制造零件的方法。与传统制造方法相比,增材制造技术具有设计自由度高、产品研发周期短、制造成本低等优势,可以无需模具快速制造复杂结构陶瓷零件。在简要阐述增材制造原理和特点的基础上,系统地分析了采用三维打印、激光选区烧结、激光选区熔化、熔融沉积造型、分层实体制造、光固化成型等技术制造陶瓷零件的研究现状及存在的问题。最后,对陶瓷零件增材制造技术在航空航天领域的潜在应用进行了分析与展望。  相似文献   

12.
王茂松  杜宇雷 《航空学报》2021,42(7):625263-625263
钛铝合金具有轻质、高强、耐高温等优异特性,在航空领域,特别是在航空发动机涡轮叶片上具有重要应用价值。然而,钛铝合金的室温脆性大、热变形能力低,使得采用传统的锻造、精密铸造、粉末冶金等技术均难以制造具有复杂形状,特别是具有内部空腔结构的钛铝合金叶片,限制了其性能的进一步提升。增材制造技术能够突破形状的制约,有望发展成为制造钛铝合金复杂结构零部件的新技术。目前,应用于钛铝合金的增材制造技术主要有电子束选区熔化、选区激光熔化和激光金属沉积。本文调研了增材制造钛铝合金领域2010~2020年的文献,对上述3类增材制造技术的原理和特性、所使用合金粉末的特性、打印构件的相组成、组织形貌和热处理工艺、宏观和微观力学性能及其在航空领域的应用等研究进行了对比分析和评述,并对增材制造钛铝合金发展中所存在的问题及下一步研发重点进行了总结和探讨。  相似文献   

13.
飞行器结构用复合材料制造技术与工艺理论进展   总被引:7,自引:2,他引:5  
复合材料结构制造工艺是复合材料应用的关键,也是结构设计得以实现的关键。复合材料制造工艺的特殊性和复杂性,使其成为了结构可靠性、制件质量和成本控制的核心技术。近些年来,随着先进复合材料在航空航天领域的广泛应用,复合材料制造技术与工艺理论得到了很大发展。本文即围绕飞行器结构用复合材料,归纳作者掌握的资料,结合作者近期研究成果,介绍先进复合材料制造技术与工艺理论的国内外研究进展,阐述复合材料工艺质量控制的主要方法,展望复合材料制造新技术的未来发展方向,以期促进我国航空航天领域复合材料用量与应用水平快速提高。  相似文献   

14.
国外航天材料的新进展   总被引:22,自引:2,他引:22  
航天技术发展推着航天材料的进步,本文简略介绍了国外航天材料,重点是高性能Al-=Li合金和先进复合材料的新进展。  相似文献   

15.
增材制造技术在航空航天金属构件领域的发展及应用   总被引:1,自引:0,他引:1  
受传统制造工艺的限制,航空航天产品一直存在生产周期长、制造成本高、减重困难等问题,迫切需要开发出航空航天产品高效快速研制方法。与传统制造工艺相比,增材制造技术以其完全不同的制造理念迅速成为制造技术领域的新方向。阐述了金属增材制造(激光/电子束/电弧)技术种类、优势、深入研究和成果应用。  相似文献   

16.
《中国航空学报》2020,33(4):1252-1259
Combination of topology optimization and additive manufacturing technologies provides an effective approach for the development of light-weight and high-performance structures. A heavy-loaded aerospace bracket is designed by topology optimization and manufactured by additive manufacturing technology in this work. Considering both mechanical forces and temperature loads, a formulation of thermo-elastic topology optimization is firstly proposed and the sensitivity analysis is derived in detail. Then the procedure of numerical optimization design is presented and the final design is additively manufactured using Selective Laser Melting (SLM). The mass of the aerospace bracket is reduced by over 18%, benefiting from topology and size optimization, and the three constraints are satisfied as well in the final design. This work indicates that the integration of thermo-elastic topology optimization and additive manufacturing technologies can be a rather powerful tool kit for the design of structures under thermal-mechanical loading.  相似文献   

17.
轻量化材料与结构是现代航空航天工业的发展方向。铝锂合金密度小,比强度、比弹性模量高,是理想的航空航天材料。采用超塑成形/扩散连接工艺成形的空心夹层结构零件具有整体性好、设计自由度大、成形精度高、无残余应力等优点,而且能够大幅减重、降低成本,广泛应用于航空航天领域。针对航空航天领域对新一代复杂多层结构件整体化和轻量化的迫切需求,回顾了国内外铝锂合金的发展历程,介绍了国内外铝锂合金超塑成形、扩散连接以及超塑成形/扩散连接组合技术的发展现状及其在航空航天领域的应用,指出铝锂合金表面致密稳定氧化膜是阻碍其扩散连接接头质量提升的瓶颈问题,讨论去除铝锂合金表面的氧化层以及防止新的氧化层再生的相关工艺与机理,最后展望了铝锂合金超塑成形/扩散连接技术在航空航天领域的应用前景以及未来研究方向。  相似文献   

18.
半球谐振陀螺技术   总被引:1,自引:0,他引:1       下载免费PDF全文
半球谐振陀螺是一种基于哥式效应的固体波动陀螺,具有高精度、长寿命、高可靠性的优势,是未来陀螺的重要方向,国内外均开展了半球谐振陀螺的相关研究。本文对美国、俄罗斯、法国以及国内的半球谐振陀螺研究历程、技术及应用现状进行了介绍,在半球谐振陀螺技术发展过程中存在着加工制造难度大、动态范围小以及全角模式下存在角速度测量阈值等技术瓶颈,亟需突破高Q值材料、两件套陀螺加工制造以及全角模式控制等关键技术研究。半球谐振陀螺的未来发展方向包括高精度、大动态、低成本以及轻质小型化等,在航天、航海、战略战术武器等诸多领域上,半球谐振陀螺都将有着良好的应用前景。  相似文献   

19.
非热压罐成型(out of autoclave process,OoA)技术是实现结构复合材料低成本制造的有效途径,是当前复合材料研究领域的热点之一。本文介绍了OoA成型复合材料国内外的研究前沿以及在航空航天领域的应用现状,从材料体系和成型工艺两大方面总结了OoA成型过程中的缺陷控制方法。在OoA预浸料成型技术中,可通过尽量减少树脂体系中挥发物含量、精细调控树脂体系反应和流变特性、控制预浸料中纤维和树脂的浸润程度、优化成型工艺等手段有效降低复合材料的孔隙率等缺陷。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号