首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
国外GAP推进剂研制现状   总被引:8,自引:1,他引:8  
综述了缩水甘油叠氮聚醚(GAP)及其推进剂的热、力学及弹道性能,GAP推进剂有较高的燃速和能量,但其燃速压强指数和温度敏感系数偏高。GAP推进剂的力学性能较差,改性GAP和支化GAP更具吸引力。GAP推进剂可用于燃气发生剂、微烟推进剂、高能推进剂及改性双基推进剂。  相似文献   

2.
叠氮粘合剂推进剂热分解及燃烧性能研究综述   总被引:5,自引:3,他引:5  
综述了叠氮类粘合剂GAP,BAMO和AMMO的热分解及共推进剂的燃烧性能,认为叠氮类推进剂中-N3基受热易分解,因而基础燃速高,燃速温度敏感性大;在配方中引入有效的添加剂,可提高该类推进剂的燃速,降低其压强度指数。  相似文献   

3.
介绍了叠氮交联层候选叠氮有机化合物的类别、合成、应用及其工艺;分析了叠氮交联层的粘结机理、适用性;着篝讨论了叠氮交联层用于绝热层/复合固化推进剂界面的制造工艺和性能。  相似文献   

4.
叠氮增塑剂由于有正的生成热、密度高、成气性好,可作为复合固体推进剂的含能增塑剂,与缩水甘油叠氮基聚合物(GAP)一样,加入推进剂中可以组成叠氮复合固体推进剂。本文对聚(叠氮环氧丙烷)二硝酸酯(AZP-2)和端叠氮基聚(叠氮环氧丙烷)(AZP-3)与多种粘合剂做了相客性研究。在80℃下的热失重试验结果表明,含叠氮基(-N_3)的增塑剂对含烯键合剂和含氰基粘合剂化学不相容;粘合剂中的羧基对叠氮基分解有催化作用。这些结果为叠氮推进剂配方设计和研制提供了重要依据。  相似文献   

5.
叠氮复合固体推进剂技术研究   总被引:5,自引:0,他引:5  
杨可喜 《上海航天》1998,15(5):44-50
分析了航天器和导弹武器系统对固体推进剂提出的新的要求和实现这些要求的技术途径。介绍了国外研制低特征信号叠氮固体推进剂的主要原材料叠氮粘合剂、含能增塑剂、高能高密度氧化剂的发展概况和关键技术。分析认为,由以上材料组成的叠氮复合固体推进剂具有含能量高、密度大、发动机排气羽烟对微波、激光和可见光的透过率高等特征,因此这是一种很有前途的新型推进剂。  相似文献   

6.
研究了LA铅盐、GT铜盐及其碳黑复合物对硝胺/叠氮推进剂燃烧性能的影响。结果表明:GT铜盐可提高叠氮/硝胺推进剂的燃速,质量分数1%的GT铜盐能提高推进剂燃速1.5~2.4 mm/s;LA铅盐、GT铜盐及其碳黑复合物可降低叠氮/硝胺推进剂压强9~19 MPa下的压强指数,推进剂中加入质量分数3%的该复合催化剂,压强9~...  相似文献   

7.
Kubot.  N  戴仙雅 《上海航天》1989,(2):31-35
为了解高能叠氮聚合物的燃烧速率机理,对GAP(聚叠氮缩水甘油醚)推进剂的燃烧和分解过程作了研究.GAP推进剂的特点是在分子结构中附有-N_3官能团,燃烧试验结果表明:即使单位质量GAP推进剂所含的能量相对较低,GAP推进剂的燃速也较高;而且其燃速很大程度上依赖于初始温度和GAP推进剂中的混合浓度.AGP推进剂的燃速随着单位质量的GAP推进剂中-N_3官能团浓度的增加而增加.从GAP燃烧火焰结构的热分布试验和热化学试验中可发现,燃烧表面放出的热量比由热气流反馈到燃烧表面的热量大得多,GAP的初始分解是由-GH_2-N=N_2分子结构中键断裂生成-C≡N N_2引起的.该分解反应具有高达685kJ/mol的放出热,由此可得,所观察到的高燃速是由燃烧表面的热分解反应引起的.  相似文献   

8.
叠氮有机化合物用作固休推进剂的组分已引起人们的高度重视,对它的研究不断深入。本文综述了国外叠氮有机化合物的性质,合成及作为固体推进剂组分的应用情况。  相似文献   

9.
GAP(缩水甘油叠氮聚合物)是一种热稳定和钝感的含能端羟基聚合物,可应用于以下先进的固体推进剂领域:a.1.3级非爆炸微烟推进剂;b.固体火箭助推器的洁净推进剂;c.气体发生器/飞行器起动器装药;d.低成本ASAT机动推进系统装药;e.轨道飞行器的高性能推进剂.本文介绍了从洛克达因公司开始研究到空军赞助下GAP现阶段的高度发展历史.  相似文献   

10.
GAP高能低特征信号推进剂的研究   总被引:9,自引:4,他引:9  
综述了四十二所GAP粘合剂和GAP高能低特征信号推进剂的研究及取得的进展、目前达到的技术水平。叠氮类推进剂可发展成高能、低特征信号和纯感推进剂,是今后战术发动机用固体推进剂的发展重点和方向。  相似文献   

11.
含能增塑剂PDADN合成及性能研究   总被引:3,自引:1,他引:3  
介绍了一种新型含能的叠氮类增塑剂PDADN合成、结构及物理化学性质,系列热分析实验表明,它有利于双基组分及黑索今的热分解,指出它在改性双基推进剂中将可改善燃烧性能。  相似文献   

12.
国外含能材料研究的新进展   总被引:1,自引:0,他引:1  
介绍当前国外含能材料及固体推进剂研究的一些新进展。支化的缩水甘油叠氮聚醚(B-GAP),含能热塑性弹性体及硝酸酯乙基硝胺类化合物(NENA)的研究正受到关注。卡托辛和巴得辛之类二茂铁衍生物是固体推进剂的高效燃速催化剂,氢化端羟基聚戊二烯能改善推进剂的储存性能,热稳定性和易损性。  相似文献   

13.
探讨了 AMMO(叠氮甲基-3′甲基氧杂环丁烷)的热分解和燃烧特性。实验证明AMMO 的热分解过程分为两步,第一步为叠氮基放出氮的放热反应;第二步为第一步的反应残渣不放热的分解反应。AMMO 是一种具有自燃性的物质,其燃速较低,仅为GAP 推进剂的50%,并与双基推进剂相同,而且对压力的敏感度也与双基推进剂相同。燃烧波温度分布的测量结果证明,由气相向燃烧表面的热反馈量随着压力上升而增加,燃烧表面温度和燃烧表面附近的放热量随压力的增加而减少。  相似文献   

14.
详细介绍西欧各国研制固体火箭推进剂的情况及其进展.对双基推进剂,包括浇注双基推进剂、压伸双基推进剂、复合改性浇注双基推进剂和复合推进剂,以及一些粘合剂的特性和发展分别作了叙述.探讨在固体推进剂中加入硼粉后性能的改进以及所带来的问题.今后固体推进剂发展的重点将是:提高总固体含量,进一步提高燃速,改进药柱的力学性能,降低温度敏感系数,以及降低推进剂成本.  相似文献   

15.
采用水下声发射法测试了聚叠氮缩水甘油醚(GAP)/六硝基六氮杂异伍兹烷(CL-20)高能推进剂燃速,使用最小二乘法计算燃速压强指数,开展了GAP/CL-20高能推进剂燃烧性能调节研究.结果表明,减小CL-20粒度、增大AP粒度、使用增塑剂Bu-NENA(丁基硝氧乙基硝胺)部分取代硝酸酯增塑剂等途径,均可降低GAP/CL...  相似文献   

16.
本文用高温加速老化的方法,通过测定 AP/HTPB 推进剂的单轴拉伸,交联密度、硬度、燃速等性能随时间的变化,比较了三乙醇胺、三氟化硼三乙醇胺、MAPO、MAPO·HAC 和 HX-752等五种常用键合剂对 AP/HTPB 推进剂贮存老化性能的影响.并通过热重分析,对含键合剂的 AP/HTPB 推进剂的老化机理进行了初步探索,粗略估算了推进剂的贮存寿命.  相似文献   

17.
为取得高能复合固体推进剂用粘合剂,探讨了BAMO(3,3-双叠氮甲基氧杂环丁烷)系聚合物,特别是BAMO与THF(氧杂环戊烷)共聚物的合成方法.结果,用二氯甲烷溶剂进行阳离子开环聚合,合成了共聚物.对取得的共聚物进行了物性、热特性以及燃烧性能的探讨.结果证明在BAMO含量为50%时,玻璃化转变温度为-64℃,热分解开始温度为210℃.随着BAMO含量的不同,线性燃速发生变化.  相似文献   

18.
镁铝贫氧推进剂的能量分析   总被引:5,自引:0,他引:5  
利用冲压发动机热力计算程序,对镁铝中能贫氧推进剂的能量特性进行了系统研究,并探讨了高能级分对该类贫氧推进剂能量性能的影响,研究结果表明,在镁铝中能贫氧推进剂中增加镁粉含量(或减少铝粉含量)贫氧推进剂的比冲下降,在一定空燃比范围内,增加空燃比有助于提高冲压发动机的比冲。提高贫氧推进剂中CL-20和硼粉含量,可以显著提高共能量,而采用叠氮类含能粘合剂取代惰性粘合剂时贫氧推进剂的比冲降低。  相似文献   

19.
研究了e3.e5、e5多功能助剂对NEPE推进剂主要性能的影响。实验结果表明,多功能助剂能明显提高NEPE推进剂的综合性能,20、70、-40℃下εm提高10%~20%以上,动态压强指数降低0.101,自燃温度提高3.9~9.8℃,分解时间延长数倍。e3.e5、e5助剂具有提高推进剂力学性能、降低压强指数、改善化学安定性和安全性能等多种功能,同时具有用量少、使用方便、效果显著、副作用小的优点。  相似文献   

20.
为了获得变推力发动机用高压强指数聚叠氮缩水甘油醚(GAP)推进剂配方,采用靶线法研究了氧化剂的种类、粒径及配比、燃速催化剂的种类及含量、以及增塑比对GAP推进剂静态燃烧性能的影响规律,采用?118标准试验发动机对GAP推进剂进行了动态燃烧性能测试。研究表明,通过综合因素调节获得了一种高压强指数GAP推进剂配方,且当燃速催化剂RC-4含量1%时,GAP推进剂在1~15 MPa范围的动态压强指数高达0.66,满足变推力发动机对推进剂压强指数的要求,同时高压区间(9~15 MPa)的动态压强指数为0.51,低于1~15 MPa的压强指数,这有利于推进剂在高压范围内的稳定燃烧,为变推力发动机在高压范围内的正常工作提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号