首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In safety-critical systems such as transportation aircraft, redundancy of actuators is introduced to improve fault tolerance. How to make the best use of remaining actuators to allow the system to continue achieving a desired operation in the presence of some actuators failures is the main subject of this paper. Considering that many dynamical systems, including flight dynamics of a transportation aircraft, can be expressed as an input affine nonlinear system, a new state representation is adopted here where the output dynamics are related with virtual inputs associated with the intended operation. This representation, as well as the distribution matrix associated with the effectiveness of the remaining operational actuators, allows us to define different levels of fault tolerant governability with respect to actuators’ failures. Then, a two-stage control approach is developed, leading first to the inversion of the output dynamics to get nominal values for the virtual inputs and then to the solution of a linear quadratic(LQ) problem to compute the solicitation of each operational actuator. The proposed approach is applied to the control of a transportation aircraft which performs a stabilized roll maneuver while a partial failure appears. Two fault scenarios are considered and the resulting performance of the proposed approach is displayed and discussed.  相似文献   

2.
A closed-loop control allocation method is proposed for a class of aircraft with multiple actuators. Nonlinear dynamic inversion is used to design the baseline attitude controller and derive the desired moment increment. And a feedback loop for the moment increment produced by the deflections of actuators is added to the angular rate loop, then the error between the desired and actual moment increment is the input of the dynamic control allocation. Subsequently, the stability of the closed-loop dynamic control allocation system is analyzed in detail. Especially, the closedloop system stability is also analyzed in the presence of two types of actuator failures: loss of effectiveness and lock-in-place actuator failures, where a fault detection subsystem to identify the actuator failures is absent. Finally, the proposed method is applied to a canard rotor/wing (CRW) aircraft model in fixed-wing mode, which has multiple actuators for flight control. The nonlinear simulation demonstrates that this method can guarantee the stability and tracking performance whether the actuators are healthy or fail.  相似文献   

3.
飞机滚转运动的控制余度与重构效能   总被引:1,自引:0,他引:1  
张平  陈宗基 《飞行力学》1998,16(3):62-67
论证了独立操纵的左右平尾使飞机滚动运动具有较大的控制余度,它增加了飞机正常飞行时的滚转力矩,在飞行中副翼出故障时可进行补偿重构,从而提高了滚动通道的余度等级和飞行的安全性,为减少滚转通道的余度配置提供了依据,通过针对操纵面失效和卡死两类故障的重构设计和仿真也证实了上述结论,同时,初步比较说明了自修复飞控系统在上述故障下的任务可靠性和基本可靠性均高于传统控制系统。  相似文献   

4.
An aircraft flight control system with reconfigurable capabilities is considered. A multiple model adaptive controller (MMAC) is shown to provide effective reconfigurability when subjected to single and double failures of sensors and/or actuators. A command generator tracker/proportional-plus-integral/Kalman filter (CGT/PI/KF) form of controller was chosen for each of the elemental controllers within the MMAC algorithm and each was designed via LQG synthesis to provide desirable vehicle behavior for a particular failure status of sensors and actuators. The MMAC performance is enhanced by an alternate computation of the MMAC hypothesis probabilities, use of maximum a posteriori probability (MAP) versus Bayesian form of the MAC (or a modified combination of both), and reduction of identification ambiguities through scalar residual monitoring for the case of sensor failures  相似文献   

5.
A modified derivation of nonlinear dynamic inversion provides the theoretical underpinnings for a reconfigurable control law for aircraft that have suffered combinations of actuator failures, missing effector surfaces, and aerodynamic changes. The approach makes use of acceleration feedback to extract information pertaining to any aerodynamic change and thus does not require a complete aerodynamic model of the aircraft. The control law does require feedback of effector positions to accommodate actuator dynamics. Both accelerometer and rate gyro failure detection and isolation (FDI) systems are implemented, allowing up to three independent failures for each FDI system as long as they are in different axes. Nonlinear simulation results show that the FDI systems improve the robustness to accelerometer/rate gyro uncertainties. An advanced tailless aircraft model is used to demonstrate the concepts. The simulation includes accelerometer and rate gyro noise and bias, failures due to accelerometers, rate gyros, and actuators, and modeled missing surfaces that cause airplane aerodynamic changes  相似文献   

6.
Smart structures with nerves of glass   总被引:4,自引:0,他引:4  
Aircraft and space platforms in the 21st century will probably be smart structures capable of sensing both their state and their environment. Networks of optical fibres will constitute an effective nervous system collecting sensory information from structurally integrated arrays of fibre optic sensors associated with each structural component. It is expected that the structural integrity of these smart structures would be monitored throughout their life. During manufacture and installation their built-in sensors would check for flaws or mishandling and therefore provide quality control. In operation their stress and thermal history would be constantly monitored to warn of impact damage, excessive loading or the onset of fatigue. These intelligent damage assessment systems could make obsolete the catastrophic failures that sometimes plague our aircraft, trains and cars today and lead to a revolution in engineering ethics. Structurally integrated optical fibre sensors could also provide the strain, displacement and deformation information required for many control situations. In some of these instances optical control signals might counterstream along these same optical paths to arrays of actuators. In the case of advanced aircraft real time monitoring of the aerodynamic load distribution combined with the extremely fast flight control made possible with distributed arrays of small actuators might permit the aircraft to respond instantly to turbulence. Another potential application is shape sensing and vibration monitoring for dynamic control of large space structures.  相似文献   

7.
董朝阳  路遥  江未来  王青 《航空学报》2015,36(6):2047-2054
针对一类存在执行机构故障的分布式结构变体飞行器的控制分配问题,结合整数规划理论,提出一种基于布谷鸟搜索算法的容错控制方法。首先,设计虚拟控制指令,使得系统状态能够很好地跟踪参考模型;然后,将执行器概率性故障与饱和约束转换为整数规划问题中决策变量的约束,从而将执行器控制分配问题转化为一类整数规划问题;最后,采用改进的布谷鸟搜索算法进行求解,得到实际的执行器控制分配指令。仿真结果表明,在执行器存在概率性故障的情况下,该容错控制方法较无容错策略的情况能够有效提升系统的跟踪性能;与遗传算法相比,该算法得到的执行器控制分配结果更加精确。  相似文献   

8.
Space robotics is regarded as one of the most impressing approaches for space debris removal missions. Due to the residual momentum of debris, it is essential to stabilize the base rapidly after capture. This paper presents a novel control strategy for stabilization of a space robot in postcapture considering actuator failures and bounded torques. In the control strategy, the motion of the manipulator is not regarded as a disturbance to the base; in contrast, it is utilized to compensate for the limitation of the control torques by means of an inverse dynamical model of the system. Different scenarios where actuators are external mechanisms or momentum exchange devices have been carried out, and for actuator failures, both single- and two-actuator failures have been considered. Regarding to the performance of actuators, control torques are bounded. In cases that either single or two actuators have failed, the base can be stabilized kinematically when actuators are external mechanisms, but can only be stabilized dynamically when only momentum exchange devices are used. Finally, a space robot with a seven-degree-of-freedom manipulator in postcapture is studied to verify the validity and feasibility of the proposed control scheme. Simulation results show that the whole system can be stabilized rapidly.  相似文献   

9.
The author examines a proposal published by D.T. Glass-Hooper (see Flight, Dec. 21, 1916) for controlling an aircraft using solenoids. He than discusses the control systems used almost universally in aircraft through the end of WWII, and the gradual evolution to almost all-electrical flight control (the hydraulic actuator is the last major nonelectrical element). Laboratory testing of electric actuators is considered and the C-141 Aileron electric actuation system is presented. The High Technology Test Bed program, which was implemented to provide a research aircraft for the development and evaluation of aerodynamic, avionic, and flight control system concepts, is described  相似文献   

10.
多电飞机作动系统的体系结构优化(英文)   总被引:3,自引:0,他引:3  
多电技术的深入发展使得飞机上可选择的功率源和作动器种类越来越多,这导致在机载作动系统体系结构优化设计过程中出现了不同功率源和作动器组合的极端复杂性,传统的"试凑"法已无法完成设计任务。首先介绍了多电飞机飞控作动系统(Flight Control Actuation System,FCAS)的组成,计算了其可能的体系结构数量;其次提出了FCAS体系结构在安全性、重量和效率方面的评价指标,计算了全机各舵面均采用同类作动器时的评价指标值;最后对比分析了现有的各种多目标优化算法,采用遗传算法给出了多电飞机FCAS体系结构的多目标优化设计结果。对比传统的只采用阀控液压伺服作动器的作动系统体系结构,优化后的体系结构可以在满足安全可靠性要求的前提下使系统的重量减轻6%左右,效率提高30%左右。  相似文献   

11.
孔祥芬  王杰  张兆民 《航空学报》2020,41(5):323632-323632
飞机电源系统中的冗余设计提升了飞机系统的可靠性,但同时也增加了共因失效发生的概率。为了准确分析飞机电源系统的可靠性,首先,采取α因子模型对共因失效部件的失效率进行分解计算,并利用贝叶斯网络(BN)建立考虑共因失效的飞机电源系统可靠性模型。然后,对比分析考虑与不考虑冗余部件之间的共因失效因素时飞机电源系统及其子系统的可靠性。结果表明,考虑冗余部件之间的共因失效因素时,得到的飞机电源系统及其子系统可靠度相对于不考虑冗余部件之间的共因失效因素时较低,更加吻合实际情况。  相似文献   

12.
With control using redundant multiple control surface arrangement and large-deflection drag rudders,a combat flying wing has a higher probability for control surface failures.Therefore,its flight control system must be able to reconfigure after such failures.Considering three types of typical control surface failures(lock-in-place(LIP),loss-of-effectiveness(LOE) and float),flight control reconfiguration characteristic and capability of such aircraft types are analyzed.Because of the control surface redundancy,the aircraft using the dynamic inversion flight control law already has a control allocation block.In this paper,its flight control configuration during the above failures is achieved by modifying this block.It is shown that such a reconfigurable flight control design is valid,through numerical simulations of flight attitude control task.Results indicate that,in the circumstances of control surface failures with limited degree and the degradation of the flying quality level,a combat flying wing adopting this flight control reconfiguration approach based on control allocation could guarantee its flight safety and perform some flight combat missions.  相似文献   

13.
In aircraft wing design, engineers aim to provide the best possible aerodynamic performance under cruise flight conditions in terms of lift-to-drag ratio. Conventional control sur-faces such as flaps, ailerons, variable wing sweep and spoilers are used to trim the aircraft for other flight conditions. The appearance of the morphing wing concept launched a new challenge in the area of overall wing and aircraft performance improvement during different flight segments by locally altering the flow over the aircraft's wings. This paper describes the development and appli-cation of a control system for an actuation mechanism integrated in a new morphing wing structure. The controlled actuation system includes four similar miniature electromechanical actuators dis-posed in two parallel actuation lines. The experimental model of the morphing wing is based on a full-scale portion of an aircraft wing, which is equipped with an aileron. The upper surface of the wing is a flexible one, being closed to the wing tip; the flexible skin is made of light composite materials. The four actuators are controlled in unison to change the flexible upper surface to improve the flow quality on the upper surface by delaying or advancing the transition point from laminar to turbulent regime. The actuators transform the torque into vertical forces. Their bases are fixed on the wing ribs and their top link arms are attached to supporting plates fixed onto the flex-ible skin with screws. The actuators push or pull the flexible skin using the necessary torque until the desired vertical displacement of each actuator is achieved. The four vertical displacements of the actuators, correlated with the new shape of the wing, are provided by a database obtained through a preliminary aerodynamic optimization for specific flight conditions. The control system is designed to control the positions of the actuators in real time in order to obtain and to maintain the desired shape of the wing for a specified flight condition. The feasibility and effectiveness of the developed control system by use of a proportional fuzzy feed-forward methodology are demon-strated experimentally through bench and wind tunnel tests of the morphing wing model.  相似文献   

14.
针对飞控系统执行器故障引起参数大范围跳变的问题,提出了一种基于多模型的自适应重构控制方法。建立了执行器故障参数模型,根据故障的特征模型设计一系列并行的辨识模型,采用固定模型与自适应模型相结合的方式,依据转换标准选择与当前飞机状态最匹配的辨识模型所对应的控制器。通过对某型飞机侧向控制系统进行仿真,表明在执行器严重受损的情况下,飞机仍能保持良好的性能。  相似文献   

15.
Traditional hydraulic brake systems require a complex system of pipelines between an aircraft engine driven pump (EDP) and brake actuators, which increases the weight of the aircraft and may even cause serious vibration and leakage problems. In order to improve the reliability and safety of more electric aircraft (MEA), this paper proposes a new integrated self-powered brake system (ISBS) for MEA. It uses a hydraulic pump geared to the main wheel to recover a small part of the kinetic energy of a landing aircraft. The recovered energy then serves as the hydraulic power supply for brake actuators. It does not require additional hydraulic source, thus removing the pipelines between an EDP and brake actuators. In addition, its self-powered characteristic makes it possible to brake as usual even in an emergency situation when the airborne power is lost. This paper introduces the working principle of the ISBS and presents a prototype. The mathematical models of a taxiing aircraft and the ISBS are established. A feedback linearization control algorithm is designed to fulfill the anti-skid control. Simulations are carried out to verify the feasibility of the ISBS, and experiments are conducted on a ground inertia brake test bench. The ISBS presents a good performance and provides a new potential solution in the field of brake systems for MEA.  相似文献   

16.
A multiple model adaptive estimation (MMAE) algorithm is implemented with the fully nonlinear six-degree-of-motion, Simulation Rapid-Prototyping facility (SRF) VISTA F-16 software simulation tool. The algorithm is composed of a bank of Kalman filters modeled to match particular hypotheses of the real world. Each presumes a single failure in one of the flight-critical actuators, or sensors, and one presumes no failure. For dual failures, a hierarchical structure is used to keep the number of on-line filters to a minimum. The algorithm is demonstrated to be capable of identifying flight-critical aircraft actuator and sensor failures at a low dynamic pressure (20,000 ft, 0.4 Mach). Research includes single and dual complete failures. Tuning methods for accommodating model mismatch, including addition of discrete dynamics pseudonoise and measurement pseudonoise, are discussed and demonstrated. Scalar residuals within each filter are also examined and characterized for possible use as an additional failure declaration voter. An investigation of algorithm performance off the nominal design conditions is accomplished as a first step towards full flight envelope coverage  相似文献   

17.
Circulation Control(CC) realizes rudderless flight control by driving compressed air jet to generate a virtual rudder surface, which significantly improves low detectability. The layout plan of combined control rudder surface is proposed based on the tailless flying wing aircraft. The closed-loop jet actuator system and stepless rudder surface switching control strategy are used to quantitatively study the control characteristics of circulation actuator for pitch and roll attitude through 3-DOF ...  相似文献   

18.
针对多模自适应(MMAE)故障检诊(FDD)方法的局限性,提出了一种基于交互多模(IMM)估计策略的动态系统中多重故障的检诊方法。交互多模估计是针对包含有结构以及参数的系统的一种效率较好的自适应估计技术,它提供了故障检测、诊断和状态估计的集中框架。通过对在传感器和作动器中含有多个故障飞机的仿真。结果表明,所提供的方法比其它方法能够更快、更可靠地检测和隔离出多重故障。  相似文献   

19.
压电驱动器的气动弹性应用   总被引:2,自引:1,他引:1  
李敏  陈伟民  贾丽杰 《航空学报》2009,30(12):2301-2310
 随着压电智能材料与结构的发展,压电驱动器在气动弹性控制领域占据重要地位。使用压电驱动器控制翼面变形,利用而不是抵抗气动弹性效应可以控制升力、力矩以及它们的分布。采用基本相同的智能结构翼面控制系统,根据不同的控制目标需求,使用压电智能材料驱动器可以达到多种目的,包括静态的形状控制与动态的颤振抑制、抖振控制与阵风响应控制。静态控制方面例如改变翼面形状获得附加空气动力以增加升力、提供横滚力矩、改变升力分布以减小诱导阻力或减小翼根弯矩等;动态控制例如利用改变翼面形状产生的附加空气动力作为控制载荷,改变气动弹性系统的耦合程度,根据控制效果要求可作为气动阻尼、气动刚度或气动质量。这种控制方法可以减轻结构重量,提高操纵效率,扩大飞行包线,提高材料利用率,已成为可变形飞行器的重要研究内容。本文主要阐述压电驱动器气动弹性应用的动机与机理、发展与成就以及问题与展望。  相似文献   

20.
基于MAS的舰载机动态调度模型   总被引:2,自引:0,他引:2  
基于多主体系统(MAS)技术研究了充分考虑舰载机故障与维修影响的实时动态调度模型.通过系统分析舰载机的基本作业流程,建立了3层混合控制的柔性模型架构.充分考虑故障等系统扰动的影响,提出基于合同网协议(CNP)的两级交互协同机制提高主体(Agent)问的协商效率,并尽可能消除重调度的影响.给出Agent个体的抽象原则以及开放性式内部结构.深入探讨了基于MAS的舰载机动态调度的基本算法.最后,选取舰载机的典型任务,在特定舰载机可靠性维修性水平下对调度过程进行仿真验证,获取了与实际调度过程趋势相符的舰载机出动能力曲线,证明了模型的可行性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号