首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Properties of tandem balloons connected by extendable suspension wires   总被引:1,自引:0,他引:1  
The tandem balloon system has been known as a candidate system for long duration flight balloons. In this paper, the properties of the system are analytically studied in a new way by introducing an extendable suspension wire in the Sky Anchor configuration, which consists of a zero-pressure main balloon suspending a payload and a super-pressure balloon suspended below the payload. It was found that extension of the suspension wire between the payload and the super-pressure balloon can extend the capability of the tandem system; the altitude of the zero-pressure balloon can be changed without any consumables except some energy, and the day–night oscillation of the balloon altitude can be suppressed. This property is useful as the vehicle for long duration flights. It is also pointed out that the method to control the altitude of a balloon using an additional suspended super-pressure balloon can also be applied for super-pressure balloons.  相似文献   

2.
The Sun cubE onE (SEE) is a 12U CubeSat mission proposed for a phase A/B study to the Italian Space Agency that will investigate Gamma and X-ray fluxes and ultraviolet (UV) solar emission to support studies in Sun-Earth interaction and Space Weather from LEO. More in detail, SEE’s primary goals are to measure the flares emission from soft-X to Gamma ray energy range and to monitor the solar activity in the Fraunhofer Mg II doublet at 280 nm, taking advantage of a full disk imager payload. The Gamma and X-ray fluxes will be studied with unprecedented temporal resolution and with a multi-wavelength approach thanks to the combined use of silicon photodiode and silicon photomultiplier (SiPM) -based detectors. The flare spectrum will be explored from the keV to the MeV range of energies by the same payload, and with a cadence up to 10 kHz and with single-photon detection capabilities to unveil the sources of the solar flares. The energy range covers the same bands used by GOES satellites, which are the standard bands for flare magnitude definition. At the same time SiPM detectors combined with scintillators allow to cover the non-thermal bremsstrahlung emission in the gamma energy range. Given its UV imaging capabilities, SEE will be a key space asset to support detailed studies on solar activity, especially in relation to ultraviolet radiation which strongly interacts with the upper layers of the Earth’s atmosphere, and in relation to space safety, included in the field of human space exploration. The main goal for the UV payload is to study the evolution of the solar UV emission in the Mg II band at two different time scales: yearly variations along the solar cycle and transient variations during flare events. The Mg II index is commonly used as a proxy of the solar activity in the Sun-as-a-star paradigm, in which solar irradiance variations in the UV correlate with the variations in stratospheric ozone concentrations and other physical parameters of the Earth high atmosphere. SEE data will be used together with space and ground-based observatories that provide Solar data (e.g. Solar Orbiter, IRIS, GONG, TSST), high energy particle fluxes (e.g. GOES, MAXI, CSES) and geomagnetic data in a multi-instrument/multi-wavelength/multi-messenger approach.  相似文献   

3.
The observation of large solar flares on high altitude balloons requires long duration balloon flights because large flares are infrequent and cannot be predicted with enough reliability and lead time to allow a conventional balloon to be launched and reach altitude before the flare occurs. With the many weeks at float altitude expected for a long duration flight, the probability of “catching” a large flare during solar maximum becomes reasonably high and the study of phenomena which heretofore have required a satellite become accessible to a balloon platform. One example of this type of experiment is the observation of neutrons produced by the interaction of flare accelerated nucleons with the solar atmosphere. Because the neutrons are produced immediately by the flare accelerated particles and are unaffected by their transmission through the upper solar atmosphere and the intervening magnetic fields, their observation at 1 A.U. will provide direct information on the flare acceleration process. Specifically, a measurement of the neutron energy and time spectra will yield the energy spectrum of the charged nucleons in the interval 50 to 500 MeV/amu, the charged particle anisotropy, the height of the acceleration region for limb flares, and information on the two-stage acceleration process. Because the γ-ray spectrum is also sensitive to these factors, a combined neutron and γ-ray measurement will provide a much more stringent test of flare models than either done separately. CWRU and the University of Melbourne have designed the EOSCOR (Extended Observation of Solar and Cosmic Radiation) detector to have the necessary sensitivity to detect neutrons from a flare 0.1 the size of the 4 Aug. 1972 event and to be compatible with the constraints of the long duration balloon system. The detector has been test flown on short duration balloon flights and calibrated at En = 38, 58, and 118 MeV. It is planned to launch it on a long duration balloon flight from Australia in December 1982 when simultaneous γ-ray observations will be possible with the SMM and/or HINTORI satellites.  相似文献   

4.
DYNAMO is a small multi-instrument payload aimed at characterizing current atmospheric escape, which is still poorly constrained, and improving gravity and magnetic field representations, in order to better understand the magnetic, geologic and thermal history of Mars. The internal structure and evolution of Mars is thought to have influenced climate evolution. The collapse of the primitive magnetosphere early in Mars history could have enhanced atmospheric escape and favored transition to the present arid climate. These objectives are achieved by using a low periapsis orbit. DYNAMO has been proposed in response to the AO released in February 2002 for instruments to be flown as a complementary payload onboard the CNES Orbiter to Mars (MO-07), foreseen to be launched in 2007 in the framework of the French PREMIER Mars exploration program. MO-07 orbital phase 2b (with an elliptical orbit of periapsis 170 km), and in a lesser extent 2a, offers an unprecedented opportunity to investigate by in situ probing the chemical and dynamical properties of the deep ionosphere, thermosphere, and the interaction between the atmosphere and the solar wind, and therefore the present atmospheric escape rate. Ultraviolet remote sensing is an essential complement to characterize high, tenuous, layers of the atmosphere. One Martian year of operation, with about 5,000 low passes, should allow DYNAMO to map in great detail the residual magnetic field, together with the gravity field. Additional data on the internal structure will be obtained by mapping the electric conductivity, sinergistically with the NETLANDER magnetic data. Three options have been recommended by the International Science and Technical Review Board (ISTRB), who met on July 1st and 2nd, 2002. One of them is centered on DYNAMO. The final choice, which should be made before the end of 2002, will depend on available funding resources at CNES.  相似文献   

5.
Possible mechanisms of solar–climatic connections, which may be of importance over short and long time intervals, are discussed. The variations of energetic balance of Earth’s climatic system for the last 50 years are estimated. It is ascertained that the imbalance between the flux of solar energy that comes to the Earth and radiates to space is of 0.1% for the last ten years. The significance is analyzed for the possible influence of variations of solar constant upon the energetic balance of the atmosphere.The physical mechanism of the influence of solar activity on climatic characteristics and the atmospheric circulation is suggested and theoretically substantiated. The mechanism is based on the redistribution in lower-troposphere of condensation nuclei by the vertical electric field. This electric field is determined by the ionosphere–Earth electric potential, which in the Polar Regions is controlled not only by tropical thunderstorms and by the galactic cosmic-ray intensity but also by solar cosmic-ray fluxes. The height redistribution in the atmosphere of condensation nuclei with a change of the electric field of the atmosphere is accompanied by a change in total latent heat (phase transition of water vapor), by changes in radiation balance, and by subsequent changes of the thermobaric field of troposphere. The results of analysis of thermobaric field variations for the periods of invasion of abnormally powerful solar cosmic ray fluxes and magnetic storms confirm the reality of manifestation of heliogeophysical disturbances.  相似文献   

6.
The first campaign of the Polar Patrol Balloon (PPB) experiment (1st-PPB) was carried out at Syowa Station in Antarctica during 1990–1991 and 1992–1993. Based on the results of the 1st-PPB experiment, the next campaign (2nd-PPB) was carried out in the austral summer of 2002–2003. This paper will present stratospheric conductivity results from the 2nd-PPB experiment. In that experiment, three balloons were launched for the purpose of upper atmosphere physics observation (three balloons). Payloads of these three flights were identical with each other, and were launched as close together in time as allowed by weather conditions to constitute a cluster of balloons during their flights. Such a “Balloon Cluster” is suitable to observe temporal evolution and spatial distribution of phenomena in the ionospheric regions and boundaries that the balloons traversed during their circumpolar trajectory. More than 20 days of simultaneous fair weather 3-axis electric field and stratospheric conductivity data were obtained at geomagnetic latitudes ranging from sub-auroral to the polar cap. Balloon separation varied from ∼60 to >1000 km. This paper will present stratospheric conductivity observations with emphasis on the temporal and spatial variations that were observed.  相似文献   

7.
This paper describes the systems for long duration flights developed in Japan for scientific observations. Much efforts have been expended to evolve systems for long duration flights in Japan, by controlling the balloon trajectories with a knowledge of wind pattern at high altitudes over Japan. These systems called “Cycling Balloon”, “Boomerang Balloon” and “New Boomerang Balloon” have been successfully used for the observations by keeping the balloons close to the balloon station.“Relay Balloon” is another system to extend the telemetry range by using an additional balloon as a relay station to link the telemetry from the main balloon.Some detailes of the exhaust valve, ascent meter and automatic level control devices used for the balloon control are also described in the paper.  相似文献   

8.
Long duration balloon flights require more electrical power than can be carried in primary batteries. This paper provides design information for selecting rechargeable batteries and charging systems. Solar panels for recharging batteries are discussed, with particular emphasis on cells mounting suitable for balloon flights and panel orientation for maximum power collection. Since efficient utilization of power is so important, modern DC to DC power conversion techniques are presented.On short flights of 1 day or less, system designers have not been greatly concerned with battery weight. But, with the advent of long duration balloon flights using superpressure balloons, anchor balloon systems, and RACOON balloon techniques, power supplies and their weight become of prime importance. The criteria for evaluating power systems for long duration balloon flights is performance per unit weight. Instrumented balloon systems have flown 44 days. For these very long duration flights, batteries recharged from solar cells are the only solution. For intermediate flight duration, say less than 10 days, the system designer should seriously consider using primary cells.  相似文献   

9.
Approved in October 2000 by ESA's Science Programme Committee as a flexi-mission, the Solar Orbiter will studythe Sun and unexplored regions of the inner heliosphere from a unique orbit that brings the probe to within 45 solar radii (0.21 AU) of our star, and to solar latitudes as high as 38°. This orbit will allow the Solar Orbiter to make fundamental contributions to our understanding of the acceleration and propagation of energetic particles in the extended solar atmosphere. During quasi-heliosynchronous phases of the orbit, Solar Orbiter will track a given region of the solar surface for several days, making possible unprecedented studies of the sources of impulsive and CME-related particle events. The scientific payload to be carried by the probe will include a sophisticated remote-sensing package, as well as state-of-the-art in-situ instruments. The multi-wavelength, multi-disciplinary approach of Solar Orbiter, combined with its novel location, represents a powerful tool for studies of energetic particle phenomena.  相似文献   

10.
大气电场反映了地球近地表大气对气象活动、太阳活动与地质活动的综合响应。实现大气电场与气象参数及地磁活动指数等参数的综合测量,对雷电活动、地质灾害和磁暴活动等的研究具有重要意义。 设计开发了一种大气电场综合观测设备,能够同时测量包含温度、相对湿度、风速和大气电场等多个参数,在大气电场探测原理的基础上给出了大气电场综合观测设备的详细设计和电场标定过程。 通过对该设备在北京市十三陵台站实测数据的分析,与中国科学院国家空间科学中心FAMEMS-DF02电场仪以及中国气象网发布的气象数据进行对比,结果表明各气象参数99%的时刻对应误差不超过±10%,平均误差不超过±3%,而电场数据的平均误差为±0.166 kV·m–1。   相似文献   

11.
Highly sophisticated balloon-borne scientific payloads have stringent requirement on the telemetry and command system. The development and fabrication of the on-board TT&C package for telemetry, tracking, command, safety and ranging for these experiments is done in-house at the National Balloon Facility (NBF) at Hyderabad. In the last few years, we have made major improvements both in the ground station and the on-board sub-systems, thereby improving the data quality, data handling speed and the general flight control along with aviation safety. The new system has telemetry data rate up to 1 Mbps. A reduction in weight, power and cost of the reengineered on-board integrated package has also lead to the ease of operation during field tests prior to launch and at remote recovery sites. In this paper, we describe the details of the new control package, its flight performance and our plans for portable S-band telemetry and telecommand system to cater to the balloon flights from Antarctic station and long duration balloon flights.  相似文献   

12.
We have studied the long-term, steady-state, solar cycle modulation of galactic cosmic ray intensity for seven cycles (17–23). Our analysis is based on the data obtained with a variety of detectors on earth (neutron monitors of the global network and muon detectors) as well as telescopes flown on high altitude balloons and on-board near-earth satellites. The median rigidity of response for these detectors to galactic cosmic ray spectrum lies in the range 1–70 GV. We correlate cosmic ray data to sunspot numbers, Ap, solar wind bulk speed (V), magnetic field (B), as well as to the cycle maximum (M), minimum (m), and the epochs of the solar polar field reversals. This enables us to derive the rigidity dependence of observations, and helps us to define the characteristics of the modulation function in the heliosphere.  相似文献   

13.
On January 20, 2005 there was an X 7.1 solar flare at 0636 UT with an accompanied halo coronal mass ejection (CME). The resultant interplanetary shock impacted earth ∼36 h later. Near earth, the Advanced Composition Explorer (ACE) spacecraft observed two impulses with a staircase structure in density and pressure. The estimated earth-arrival times of these impulses were 1713 UT and 1845 UT on January 21, 2005. Three MINIature Spectrometer (MINIS) balloons were aloft on January 21st; one in the northern polar stratosphere and two in the southern polar stratosphere. MeV relativistic electron precipitation (REP) observed by all three balloons is coincident (<3 min) with the impulse arrivals and magnetospheric compression observed by both GOES 10 and 12. Balloon electric field data from the southern hemisphere show no signs of the impulse electric field directly reaching the ionosphere. Enhancement of the balloon-observed convection electric field by as much as 40 mV/m in less than 20 min during this time period is consistent with typical substorm growth. Precipitation-induced ionospheric conductivity enhancements are suggested to be (a) the result of both shock arrival and substorm activity and (b) the cause of rapid (<6 min) decreases in the observed electric field (by as much as 40 mV/m). There is poor agreement between peak cross polar cap potential in the northern hemisphere calculated from Super Dual Auroral Radar Network (SuperDARN) echoes and horizontal electric field at the MINIS balloon locations in the southern hemisphere. Possible reasons for this poor agreement include (a) a true lack of north–south conjugacy between measurement sites, (b) an invalid comparison between global (SuperDARN radar) and local (MINIS balloon) measurements and/or (c) radar absorption resulting from precipitation-induced D-region ionosphere density enhancements.  相似文献   

14.
This paper describes the design, fabrication and testing of a full scale prototype balloon intended for long duration flight in the upper atmosphere of Venus. The balloon is 5.5 m in diameter and is designed to carry a 45 kg payload at an altitude of 55 km. The balloon material is a 180 g/m2 multi-component laminate comprised of the following layers bonded together from outside to inside: aluminized Teflon film, aluminized Mylar film, Vectran fabric and a polyurethane coating. This construction provides the required balloon functional characteristics of low gas permeability, sulfuric acid resistance and high strength for superpressure operation. The design burst superpressure is 39,200 Pa which is predicted to be 3.3 times the worst case value expected during flight at the highest solar irradiance in the mission profile. The prototype is constructed from 16 gores with bi-taped seams employing a sulfuric acid resistant adhesive on the outside. Material coupon tests were performed to evaluate the optical and mechanical characteristics of the laminate. These were followed by full prototype tests for inflation, leakage and sulfuric acid tolerance. The results confirmed the suitability of this balloon design for use at Venus in a long duration mission. The various data are presented and the implications for mission design and operation are discussed.  相似文献   

15.
A global array of 20 radio observatories was used to measure the three-dimensional position and velocity of the two meteorological balloons that were injected into the equatorial region of the Venus atmosphere by the VEGA spacecraft. Initial analysis of only radial velocities indicates that each balloon was blown westward about 11,500 kilometers (8000 kilometers on the night side) by zonal winds with a mean speed of about 70 meters per second. Excursions of the data from a model of constant zonal velocity are generally less than 3 meters per second; however, a much larger variation is evident near the end of the flight of the second balloon. Consistent systematic trends in the residuals for both balloons indicate the possibility of a solar-fixed atmospheric feature.  相似文献   

16.
Established in 1971, the National Balloon Facility operated by TIFR in Hyderabad, India, is a unique facility in the country, which provides a complete solution in scientific ballooning. It is also one of its kind in the world since it combines both, the in-house balloon production and a complete flight support for scientific ballooning. With a large team working through out the year to design, fabricate and launch scientific balloons, the Hyderabad Facility is a unique centre of expertise where the balloon design, research and development, the production and launch facilities are located under one roof. Our balloons are manufactured from 100% indigenous components. The mission specific balloon design, high reliability control and support instrumentation, in-house competence in tracking, telemetry, telecommand, data processing, system design and mechanics is its hallmark. In the past few years, we have executed a major programme of upgradation of different components of balloon production, telemetry and telecommand hardware and various support facilities. This paper focuses on our increased capability of balloon production of large sizes up to 780,000 m3 using Antrix film, development of high strength balloon load tapes with the breaking strength of 182 kg, and the recent introduction of S-band telemetry and a commandable timer cut-off unit in the flight hardware. A summary of the various flights conducted in recent years will be presented along with the plans for new facilities.  相似文献   

17.
An outstanding issue with aerospace workforce development is what should be done at the university level to attract and prepare undergraduates for an aerospace career. One approach adopted by many institutions is to lead students through the design and development of small payloads (less than about 500 grams) that can be carried up to high altitude (around 30 km) by a latex sounding balloon. This approach has been very successful in helping students to integrate their content knowledge with practical skills and to understand the end-to-end process of aerospace project development. Sounding balloons, however, are usually constrained in flight duration (∼30 min above 24 km) and payload weight, limiting the kinds investigations that are possible. Student built picosatellites, such as CubeSats, can be placed in low Earth orbit removing the flight duration constraint, but the delays between satellite development and launch can be years. Here, we present the inexpensive high altitude student platform (HASP) that is designed to carry at least eight student payloads at a time to an altitude of about 36 km with flight durations of 15–20 h using a small zero-pressure polyethylene film balloon. This platform provides a flight capability greater than sounding balloons and can be used to flight-test compact satellites, prototypes and other small payloads designed and built by students. The HASP includes a standard mechanical, power and communication interface for the student payload to simplify integration and allows the payloads to be fully exercised. HASP is lightweight, has simple mission requirements providing flexibility in the launch schedule, will provide a flight test opportunity at the end of each academic year.  相似文献   

18.
The solar atmosphere exhibits a diverse range of wave phenomena, where one of the earliest discovered was the five-minute global acoustic oscillation, also referred to as the p-mode. The analysis of wave propagation in the solar atmosphere may be used as a diagnostic tool to estimate accurately the physical characteristics of the Sun’s atmospheric layers.In this paper, we investigate the dynamics and upward propagation of waves which are generated by the solar global eigenmodes. We report on a series of hydrodynamic simulations of a realistically stratified model of the solar atmosphere representing its lower region from the photosphere to low corona. With the objective of modelling atmospheric perturbations, propagating from the photosphere into the chromosphere, transition region and low corona, generated by the photospheric global oscillations the simulations use photospheric drivers mimicking the solar p-modes. The drivers are spatially structured harmonics across the computational box parallel to the solar surface. The drivers perturb the atmosphere at 0.5?Mm above the bottom boundary of the model and are placed coincident with the location of the temperature minimum. A combination of the VALIIIC and McWhirter solar atmospheres are used as the background equilibrium model.We report how synthetic photospheric oscillations may manifest in a magnetic field free model of the quiet Sun. To carry out the simulations, we employed the magnetohydrodynamics code, SMAUG (Sheffield MHD Accelerated Using GPUs).Our results show that the amount of energy propagating into the solar atmosphere is consistent with a model of solar global oscillations described by Taroyan and Erdélyi (2008) using the Klein-Gordon equation. The computed results indicate a power law which is compared to observations reported by Ireland et al. (2015) using data from the Solar Dynamics Observatory/Atmospheric Imaging Assembly.  相似文献   

19.
NASA’s development of a large payload, high altitude, long duration balloon, the Ultra Long Duration Balloon, centers on a pumpkin shape super-pressure design. Under certain circumstances, it has been observed that a pumpkin balloon may be unable to pressurize into the desired cyclically symmetric equilibrium configuration, settling into a distorted, undesired state instead. Success of the pumpkin balloon for NASA requires a thorough understanding of the phenomenon of multiple stable equilibria and developing of means for the quantitative assessment of design measures that prevent the occurrence of undesired equilibrium. In this paper, we will use the concept of stability to classify cyclically symmetric equilibrium states at full inflation and pressurization. Our mathematical model for a strained equilibrium balloon, when applied to a shape that mimics the Phase IV-A balloon of Flight 517, predicts instability at float. Launched in Spring 2003, this pumpkin balloon failed to deploy properly. Observations on pumpkin shape type super-pressure balloons that date back to the 1980s suggest that within a narrowly defined design class of pumpkin shape super-pressure balloons where individual designs are fully described by the number of gores ng and by a single measure of the bulging gore shape, the designs tend to become more vulnerable with the growing number of gores and with the diminishing size of the bulge radius rB Weight efficiency considerations favor a small bulge radius, while robust deployment into the desired cyclically symmetrical configuration becomes more likely with an increased bulge radius. In an effort to quantify this dependency, we will explore the stability of a family of balloon shapes parametrized by (ng, rB) which includes a design that is very similar, but not identical, to the balloon of Flight 517. In addition, we carry out a number of simulations that demonstrate other aspects related to multiple equilibria of pumpkin balloons.  相似文献   

20.
During the Middle Atmosphere Program, 1982–1985, balloons will play a central role in gathering stratospheric, chemical, and dynamical data. This paper discusses some of the unique aspects of balloons as tools for probing the middle atmosphere, and suggests some directions for future projects and enhanced capabilities that would improve their utility in future investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号