首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 572 毫秒
1.
In order to control contamination of planets by terrestrial microorganisms and organic constituents, U.S. planetary missions have been governed by a planetary protection (or planetary quarantine) policy which has changed little since 1972. This policy has recently been reviewed in light of new information obtained from planetary exploration during the past decade and because of changes to, or uncertainties in, some parameters used in the existing quantitative approach. On the basis of this analysis, a revised planetary protection policy with the following key features is proposed: deemphasizing the use of mathematical models and quantitative analyses; establishing requirements for target planet/mission type (i.e., orbiter, lander, etc.) combinations; considering sample return missions a separate category; simplifying documentation; and imposing implementing procedures (i.e., trajectory biasing, cleanroom assembly, spacecraft sterilization, etc.) by exception, i.e., only if the planet/mission combination warrants such controls.  相似文献   

2.
Human missions to Mars are planned to happen within this century. Activities associated therewith will interact with the environment of Mars in two reciprocal ways: (i) the mission needs to be protected from the natural environmental elements that can be harmful to human health, the equipment or to their operations; (ii) the specific natural environment of Mars should be protected so that it retains its value for scientific and other purposes. The following environmental elements need to be considered in order to protect humans and the equipment on the planetary surface: (i) cosmic ionizing radiation, (ii) solar particle events; (iii) solar ultraviolet radiation; (iv) reduced gravity; (v) thin atmosphere; (vi) extremes in temperatures and their fluctuations; and (vii) surface dust. In order to protect the planetary environment, the requirements for planetary protection as adopted by COSPAR for lander missions need to be revised in view of human presence on the planet. Landers carrying equipment for exobiological investigations require special consideration to reduce contamination by terrestrial microorganisms and organic matter to the greatest feasible extent. Records of human activities on the planet's surface should be maintained in sufficient detail that future scientific experimenters can determine whether environmental modifications have resulted from explorations.  相似文献   

3.
The European Space Agency's studies of a Comet Nucleus Sample Return mission (ROSETTA) as its Planetary Cornerstone in its long-term programme 'Horizon 2000' and the Marsnet mission, a potential contribution of the Agency to an international network of surface stations on Mars, has revived the interest in the present state of Planetary Protection requirements. MARSNET was one of the four candidate missions selected in April 1991 for further Design Feasibility (Phase A) Studies. Furthermore, of all space agencies participating in planetary exploration activities only the United States National Aeronautics and Space Administration had a well established Planetary Protection Policy on Viking and other relevant planetary missions, whereas ESA is considering the feasibility and potential impact of a planetary protection policy on its Marsnet mission, within the framework of a tight budgetary envelope applicable to ESA's medium (M) class missions. This paper will discuss in general terms the impact of Planetary Protection measures, its implications for Marsnet and the issues arising from this for the implementation of the mission in ESA's scientific programme.  相似文献   

4.
The search for traces of extinct and extant life on Mars will be extended to beneath the surface of the planet. Current data from Mars missions suggesting the presence of liquid water early in Mars' history and mathematical modeling of the fate of water on Mars imply that liquid water may exist deep beneath the surface of Mars. This leads to the hypothesis that life may exist deep beneath the Martian surface. One possible scenario to look for life on Mars involves a series of unmanned missions culminating with a manned mission drilling deep into the Martian subsurface (approximately 3Km), collecting samples, and conducting preliminary analyses to select samples for return to earth. This mission must address both forward and back contamination issues, and falls under planetary protection category V. Planetary protection issues to be addressed include provisions stating that the inevitable deposition of earth microbes by humans should be minimized and localized, and that earth microbes and organic material must not contaminate the Martian subsurface. This requires that the drilling equipment be sterilized prior to use. Further, the collection, containment and retrieval of the sample must be conducted such that the crew is protected and that any materials returning to earth are contained (i.e., physically and biologically isolated) and the chain of connection with Mars is broken.  相似文献   

5.
Over the last several years, the nature of the surface conditions on the planet Mars, our knowledge of the growth capabilities of Earth organisms under extreme conditions, and future opportunities for Mars exploration have been under extensive review in the United States and elsewhere. As part of these examinations, in 1992 the US Space Studies Board made a series of recommendations to NASA on the requirements that should be implemented on future missions that will explore Mars. In particular, significant changes were recommended in the requirements for Mars landers, changes that significantly alleviated the burden of planetary protection implementation for these missions. In this paper we propose a resolution implementing this new set of recommendations, for adoption by COSPAR at its 30th meeting in Hamburg. We also discuss future directions and study areas for planetary protection, in light of changing plans for Mars exploration.  相似文献   

6.
The planned NASA sample acquisition flight missions to Mars pose several interesting planetary protection issues. In addition to the usual forward contamination procedures for the adequate protection of Mars for the sake of future missions, there are reasons to ensure that the sample is not contaminated by terrestrial microbes from the acquisition mission. Recent recommendations by the Space Studies Board (SSB) of the National Research Council (United States), would indicate that the scientific integrity of the sample is a planetary protection concern (SSB, 1997). Also, as a practical matter, a contaminated sample would interfere with the process for its release from quarantine after return for distribution to the interested scientists. These matters are discussed in terms of the first planned acquisition mission.  相似文献   

7.
The implementation of planetary protection in the United States space program has reflected the trend in policy from an absolute to a probabilistic prohibition of the contamination of the celestial bodies of the solar system. The early emphasis on spacecraft sterilization (e.g. Ranger) was replaced by the imposition of contamination control procedures on later missions such as Pioneer, Viking, and Voyager. Similarly, analytical and laboratory techniques were developed to demonstrate compliance with probabilistic requirements. Microbial burden reduction methods that are not hazardous for spacecraft reliability supplanted the abstract concept of sterilization. The United States implementation of planetary protection has been completely successful. In an exploration program that has included Mercury, Venus, Mars, the Jovian system, and the Saturnian system, there have been no accidental impacts or detection of false positives (terrestrial microbes). Further, the contamination control and microbial burden procedures have proved beneficial to spacecraft systems and on-board science instruments. We review in this paper the implementation of planetary protection procedures by the Pioneer (10 and 11), Viking and Voyager projects.  相似文献   

8.
载人火星探测的行星保护   总被引:1,自引:0,他引:1       下载免费PDF全文
行星保护是影响载人火星探索任务的重要问题之一。载人探测的行星保护包括3个方面,即防止来源于地球的微生物污染目标星球的正向污染防护、防止外来生物对地球的潜在危害的逆向污染防护,以及确保航天员的健康和安全。国际宇航界已经开始针对载人火星探测的行星保护制定政策法规和开展技术研讨。本文介绍了行星保护的定义和法理依据,简要回顾了美国国家航空航天局在“阿波罗登月”中的行星保护措施,并对未来载人火星探测中的主要污染物、污染途径以及污染防护策略进行了初步探讨。  相似文献   

9.
This paper is one of the components of a larger framework of activities whose purpose is to improve the performance and productivity of space mission systems, i.e. to increase both what can be achieved and the cost effectiveness of this achievement. Some of these activities introduced the concept of Functional Architecture Module (FAM); FAMs are basic blocks used to build the functional architecture of Plan Management Systems (PMS). They also highlighted the need to involve Science Operations Planning Expertise (SOPE) during the Mission Design Phase (MDP) in order to design and implement efficiently operation planning systems. We define SOPE as the expertise held by people who have both theoretical and practical experience in operations planning, in general, and in space science operations planning in particular. Using ESA’s methodology for studying and selecting science missions we also define the MDP as the combination of the Mission Assessment and Mission Definition Phases. However, there is no generic procedure on how to use FAMs efficiently and systematically, for each new mission, in order to analyse the cost and feasibility of new missions as well as to optimise the functional design of new PMS; the purpose of such a procedure is to build more rapidly and cheaply such PMS as well as to make the latter more reliable and cheaper to run. This is why the purpose of this paper is to provide an embryo of such a generic procedure and to show that the latter needs to be applied by people with SOPE during the MDP. The procedure described here proposes some initial guidelines to identify both the various possible high level functional scenarii, for a given set of possible requirements, and the information that needs to be associated with each scenario. It also introduces the concept of catalogue of generic functional scenarii of PMS for space science missions. The information associated with each catalogued scenarii will have been identified by the above procedure and will be relevant only for some specific mission requirements. In other words, each mission that shares the same type of requirements that lead to a list of specific catalogued scenarii can use this latter list of scenarii (regardless of whether the mission is a plasma, planetary, astronomy, etc. mission). The main advantages of such a catalogue are that it speeds-up the execution of the procedure and makes the latter more reliable. Ultimately, the information associated to each relevant scenario (from the catalogue or freshly generated by the procedure) will then be used by mission designers to make informed decisions, including the modification of the mission requirements, for any missions. In addition, to illustrate the use of such a procedure, the latter is applied to a case study, i.e. the Cross-Scale mission. One of the outcomes of this study is an initial set of generic functional scenarii. Finally, although border line with the above purpose of this paper, we also discuss multi-spacecraft specific issues and issues related to the on-board execution of the plan update system (PUS). In particular, we show that the operation planning cost of N spacecraft is not equal to N times the cost of 1 spacecraft and that on-board non-synchronised operation will not require inter-spacecraft communication. We also believe that on-board PUS should be made possible for all missions as a standard.  相似文献   

10.
As scientists and mission planners develop planetary protection requirements for future Mars sample return missions, they must recognize the socio-political context in which decisions about the mission will be made and pay careful attention to public concerns about potential back contamination of Earth. To the extent that planetary protection questions are unresolved or unaddressed at the time of an actual mission, they offer convenient footholds for public challenges in both legal and decision making realms, over which NASA will have little direct control. In this paper, two particular non-scientific areas of special concern are discussed in detail: 1) legal issues and 2) the decision making process. Understanding these areas is critical for addressing legitimate public concerns as well as for fulfilling procedural requirements regardless whether sample return evokes public controversy. Legal issues with the potential to complicate future missions include: procedural review under National Environmental Policy Act (NEPA); uncertainty about institutional control and authority; conflicting regulations and overlapping jurisdictions; questions about international treaty obligations and large scale impacts; uncertanities about the nature of the organism; and constitutional and regulatory concerns about quarantine, public health and safety. In light of these important legal issues, it is critical that NASA consider the role and timing of public involvement in the decision making process as a way of anticipating problem areas and preparing for legitimate public questions and challenges to sample return missions.  相似文献   

11.
Sample return missions from a comet nucleus and the Mars surface are currently under study in the US, USSR, and by ESA. Guidance on Planetary Protection (PP) issues is needed by mission scientists and engineers for incorporation into various elements of mission design studies. Although COSPAR has promulgated international policy on PP for various classes of solar system exploration missions, the applicability of this policy to sample return missions, in particular, remains vague. In this paper, we propose a set of implementing procedures to maintain the scientific integrity of these samples. We also propose that these same procedures will automatically assure that COSPAR-derived PP guidelines are achieved. The recommendations discussed here are the first step toward development of official COSPAR implementation requirements for sample return missions.  相似文献   

12.
国际行星保护发展综述   总被引:2,自引:0,他引:2  
首先介绍了行星保护的定义,然后回顾了国际行星保护政策的提出和演化过程,给出了当前国际行星保护政策针对不同目标和任务形式的最新要求,简要介绍了美、欧、日、俄和印度等世界各主要航天国家/机构在行星保护方面的管理制度和实施情况等发展现状,对行星保护实施过程中的主要技术途径进行了分析,最后介绍了行星保护领域的最新进展,并提出了思考和建议。  相似文献   

13.
The viewpoint of working group of Russian experts on the problem of planetary protection for future manned and unmanned Mars mission is presented. Recent data of Martian environment and on survival of terrestrial microorganisms in extreme conditions were used for detailed analysis and overview of planetary protection measures in regard to all possible flight situations including accidental landing. The special emphasis on "Mars-94" mission was done. This analysis resulted in revised formulation of spacecraft sterilization requirements and possible measures for their best implementation. New general combined approach to spacecraft sterilization was proposed. It includes penetrating radiation and heat treatment of spacecraft parts and components which is to be carried out before the final assembly of spacecraft and gaseous radiation sterilization of the whole spacecraft during the flight to Mars (or from Mars for return missions).  相似文献   

14.
The pace of scientific exploration of our solar system provides ever-increasing insights into potentially habitable environments, and associated concerns for their contamination by Earth organisms. Biological and organic-chemical contamination has been extensively considered by the COSPAR Panel on Planetary Protection (PPP) and has resulted in the internationally recognized regulations to which spacefaring nations adhere, and which have been in place for 40 years. The only successful Mars lander missions with system-level “sterilization” were the Viking landers in the 1970s. Since then different cleanliness requirements have been applied to spacecraft based on their destination, mission type, and scientific objectives. The Planetary Protection Subcommittee of the NASA Advisory Council has noted that a strategic Research & Technology Development (R&TD) roadmap would be very beneficial to encourage the timely availability of effective tools and methodologies to implement planetary protection requirements. New research avenues in planetary protection for ambitious future exploration missions can best be served by developing an over-arching program that integrates capability-driven developments with mission-driven implementation efforts. This paper analyzes the current status concerning microbial reduction and cleaning methods, recontamination control and bio-barriers, operational analysis methods, and addresses concepts for human exploration. Crosscutting research and support activities are discussed and a rationale for a Strategic Planetary Protection R&TD Roadmap is outlined. Such a roadmap for planetary protection provides a forum for strategic planning and will help to enable the next phases of solar system exploration.  相似文献   

15.
Current planetary quarantine considerations focus on robotic missions and attempt a policy of no biological contamination. The presence of humans on Mars, however, will inevitably result in biological contamination and physical alteration of the local environment. The focus of planetary quarantine must therefore shift toward defining and minimizing the inevitable contamination associated with humans. This will involve first determining those areas that will be affected by the presence of a human base, then verifying that these environments do not harbor indigenous life nor provide sites for Earth bacteria to grow. Precursor missions can provide salient information that can make more efficient the planning and design of human exploration missions. In particular, a robotic sample return mission can help to eliminate the concern about returning samples with humans or the return of humans themselves from a planetary quarantine perspective. Without a robotic return the cost of quarantine that would have to be added to a human mission may well exceed the cost of a robotic return mission. Even if the preponderance of scientific evidence argues against the presence of indigenous life, it must be considered as part of any serious planetary quarantine analysis for missions to Mars. If there is life on Mars, the question of human exploration assumes an ethical dimension.  相似文献   

16.
In the coming decades the detection of Earth-like extrasolar planets, either apparently lifeless or exhibiting spectral signatures of life, will encourage design studies for craft to visit them. These missions will require the elaboration of an interstellar planetary protection protocol. Given a specific dose required to sterilize microorganisms on a spacecraft, a critical mean velocity can be determined below which a craft becomes self-sterilizing. This velocity is calculated to be below velocities previously projected for interstellar missions, suggesting that an active sterilization protocol prior to launch might be required. Given uncertainties in the surface conditions of a destination extrasolar planet, particularly at microscopic scales, the potential for unknown biochemistries and biologies elsewhere, or the possible inoculation of a lifeless planet that is habitable, then both lander and orbiter interstellar missions should be completely free of all viable organisms, necessitating a planetary protection approach applied to orbiters and landers bound for star systems with unknown local conditions for habitability. I discuss the case of existing craft on interstellar trajectories – Pioneer 10, 11 and Voyager 1 and 2.  相似文献   

17.
Asteroid exploration provides a new approach to study the formation of the solar system and the planetary evolution. Choosing a suitable target and designing of feasible profile for asteroid mission are challenging due to constraints such as scientific value and technical feasibility. This paper investigates a feasible mission scenario among the potential candidates of multiple flybys and sample return missions. First, a group of potential candidates are selected by considering the physical properties and accessibility of asteroids, for the sample return missions. Second, the feasible mission scenarios for multiple flybys and sample return missions to various spectral-type asteroids are investigated. We present the optimized design of preliminary interplanetary transfer trajectory for two kinds of missions. One is the single sample return mission to asteroids with various spectral types. The other is the multiple flybys and sample return mission to several asteroids. In order to find the optimal profiles, the planetary swing-by technique and Differential Evolution algorithm are used.  相似文献   

18.
In accordance with the United Nations Outer Space Treaties [United Nations, Agreement Governing the Activities of States on the Moon and Other Celestial Bodies, UN doc A/RES/34/68, resolution 38/68 of December 1979], currently maintained and promulgated by the Committee on Space Research [COSPAR Planetary Protection Panel, Planetary Protection Policy accepted by the COSPAR Council and Bureau, 20 October 2002, amended 24 March 2005, http://www.cosparhq.org/scistr/PPPolicy.htm], missions exploring the Solar system must meet planetary protection requirements. Planetary protection aims to protect celestial bodies from terrestrial contamination and to protect the Earth environment from potential biological contamination carried by returned samples or space systems that have been in contact with an extraterrestrial environment. From an exobiology perspective, Mars is one of the major targets, and several missions are currently in operation, in transit, or scheduled for its exploration. Some of them include payloads dedicated to the detection of life or traces of life. The next step, over the coming years, will be to return samples from Mars to Earth, with a view to increasing our knowledge in preparation for the first manned mission that is likely to take place within the next few decades. Robotic missions to Mars shall meet planetary protection specifications, currently well documented, and planetary protection programs are implemented in a very reliable manner given that experience in the field spans some 40 years. With regards to sample return missions, a set of stringent requirements has been approved by COSPAR [COSPAR Planetary Protection Panel, Planetary Protection Policy accepted by the COSPAR Council and Bureau, 20 October 2002, amended 24 March 2005, http://www.cosparhq.org/scistr/PPPolicy.htm], and technical challenges must now be overcome in order to preserve the Earth’s biosphere from any eventual contamination risk. In addition to the human dimension of the mission, sending astronauts to Mars will entail meeting all these constraints. Astronauts present huge sources of contamination for Mars and are also potential carriers of biohazardous material on their return to Earth. If they were to have the misfortune of being contaminated, they themselves would become a biohazard, and, as a consequence, in addition to the technical constraints, human and ethical considerations must also be taken into account.  相似文献   

19.
Mars surface in-situ exploration started in 1975 with the American VIKING mission. Two probes landed on the northern hemisphere and provided, for the first time, detailed information on the martian terrain, atmosphere and meteorology. The current goal is to undertake larger surface investigations and many projects are being planned by the major Space Agencies with this objective. Among these projects, the Mars 94/96 mission will make a major contributor toward generating significant information about the martian surface on a large scale. Since the beginning of the Solar System exploration, planets where life could exist have been subject to planetary protection requirements. Those requirements accord with the COSPAR Policy and have two main goals: the protection of the planetary environment from influence or contamination by terrestrial microorganisms, the protection of life science, and particularly of life detection experiments searching extra-terrestrial life, and not life carried by probes and spacecrafts. As the conditions for life and survival for terrestrial microorganisms in the Mars environment became known, COSPAR recommendations were updated. This paper will describe the decontamination requirements which will be applied for the MARS 94/96 mission, the techniques and the procedures which are and will be used to realize and control the decontamination of probes and spacecrafts.  相似文献   

20.
The planning and execution of manned and robotic missions to Mars present a wide range of jurisprudential issues. Provisions to prevent the disruption of natural celestial environments, as well as damage to the environment of Earth by the return of extraterrestrial materials, are important components of the law applicable to mankind's activities in outer space, and have been supplemented by scientifically instituted planetary protection policies. However, divergent legal regimes may exist, as the space treaties in force are neither uniform in their provisions, nor identical as to the states which have signed, ratified, or adopted the international agreements. The legal requirements applicable to a specific mission will vary depending on the entities conducting the program and specific mission profile. This article analyzes the divergent international legal regimes together with the factors which will influence the determination of the standards of conduct which will govern manned and robotic missions to Mars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号