首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The remote X-ray fluorescence spectroscopy is a powerful technique to investigate the elemental abundances in the atmosphere-less planetary bodies. The experiment involves measuring spectra of fluorescent X-rays from lunar surface using a low energy X-ray detector onboard an orbiting satellite. Since the flux of fluorescent X-ray lines critically depend on the flux and spectrum of the incident solar X-rays, it is essential to have simultaneous and accurate measurement of X-ray from both Moon and Sun. In the context of Moon, this technique has been employed since early days of space exploration to determine elemental composition of lunar surface. However, so far it has not been possible to exploit it to its full potential due to various reasons. Therefore it is planned to continue the remote X-ray fluorescence spectroscopy experiment on-board Chandrayaan-2 which includes both lunar X-ray observations and solar X-ray observations as two separate payloads. The lunar X-ray observations will be carried out by Chandra Large Area Soft x-ray Spectrometer (CLASS) experiment; whereas the solar X-ray observations will be carried out by a separate payload, Solar X-ray Monitor (XSM). Here we present the overall design of the XSM instrument, the present development status as well as preliminary results of the laboratory model testing. XSM instrument will have two packages namely – XSM sensor package and XSM electronics package. XSM will accurately measure spectrum of Solar X-rays in the energy range of 1–15 keV with energy resolution ∼200 eV @ 5.9 keV. This will be achieved by using state-of-the-art Silicon Drift Detector (SDD), which has a unique capability of maintaining high energy resolution at very high incident count rate expected from Solar X-rays. XSM onboard Chandrayaan-2 will be the first experiment to use such detector for Solar X-ray monitoring.  相似文献   

2.
There have been significant, recent advances in understanding the solar ultraviolet (UV) and X-ray spectral irradiance from several different satellite missions and from new efforts in modeling the variations of the solar spectral irradiance. The recent satellite missions with solar UV and X-ray spectral irradiance observations include the X-ray Sensor (XRS) aboard the series of NOAA GOES spacecraft, the Upper Atmosphere Research Satellite (UARS), the SOHO Solar EUV Monitor (SEM), the Solar XUV Photometers (SXP) on the Student Nitric Oxide Explorer (SNOE), the Solar EUV Experiment (SEE) aboard the Thermosphere, Ionosphere, Mesosphere, Dynamics, and Energetics (TIMED) satellite, and the Solar Radiation and Climate Experiment (SORCE) satellite. The combination of these measurements is providing new results on the variability of the solar ultraviolet irradiance throughout the ultraviolet range shortward of 200 nm and over a wide range of time scales ranging from years to seconds. The solar UV variations of flares are especially important for space weather applications and upper atmosphere research, and the period of intense solar storms in October–November 2003 has provided a wealth of new information about solar flares. The new efforts in modeling these solar UV spectral irradiance variations range from simple empirical models that use solar proxies to more complicated physics-based models that use emission measure techniques. These new models provide better understanding and insight into why the solar UV irradiance varies, and they can be used at times when solar observations are not available for atmospheric studies.  相似文献   

3.
We have studied the solar magnetic cycle in corona using X-ray data from YOHKOH and Extreme Ultraviolet data from SOHO/EIT. Soft X-ray data last the period from after the maximum cycle 22 to the maximum cycle 23 (1991–2001). The SOHO/EIT Extreme Ultraviolet data are used for the period from 1996 to 2003. These data provide us a unique opportunity to look at the solar corona on the solar disc and to compare with the magnetic activity, directly.Our studies reveal a close relationship between the coronal emissions and the photospheric magnetic field in the axisymmetrical case. The evolution of coronal structures in X-ray and EUV can be considered as a proxy of the coronal magnetic field and demonstrates a development of the solar magnetic cycle in corona. It is shown that the most important feature of the coronal cycle is the forming of giant loops structure visible in X-ray and, partially, in EUV (284A) on the solar disk.  相似文献   

4.
We report multi-wavelength investigation of the pre-impulsive phase of the 13 December 2006 X-class solar flare. We use hard X-ray data from the anticoincidence system of spectrometer onboard INTEGRAL (ACS) jointly with soft X-ray data from the GOES-12 and Hinode satellites. Radio data are from Nobeyama and Learmonth solar observatories and from the Culgoora Solar Radio Spectrograph. The main finding of our analysis is a spiky increase of the ACS count rate accompanied by surprisingly gradual and weak growth of microwave emission and without detectable radio emission at meter and decimeter wavelengths about 10 min prior to the impulsive phase of the solar flare. At the time of this pre-flare hard X-ray burst the onset of the GOES soft X-ray event has been reported, positive derivative of the GOES soft X-ray flux started to rise and a bright spot has appeared in the images of the Hinode X-ray telescope (XRT) between the flare ribbons near the magnetic inversion line close to the sources of thermal and non-thermal hard X-ray emission observed by Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) during the flare. These facts we consider as evidences of solar origin of the increased pre-flare ACS count rate. We briefly discuss a possible cause of the pre-flare emission peculiarities.  相似文献   

5.
本文介绍了北京大学目前进行的电离层观测中的一种SID地面连续监测设备;着重讨论它在太阳耀斑观测方面的应用.通过对1982-1983年资料的分析表明,此方法对太阳耀斑活动十分敏感.所记录到的SID现象与世界上其他主要台站的报告基本上一致.文中介绍的几个实例说明有可能利用SID形态研究耀斑时的X射线强度的时间演变.统计结果还表明1-8A谱段的X射线峰值流量与SID扰动强度之间满足一个较简单的关系式,可据此对较大的太阳X射线耀斑的峰值流量做出估计.   相似文献   

6.
为了更加准确地判断X级耀斑是否引发质子事件,对X级质子耀斑和非质子耀斑的耀斑积分通量、源区、CME速度、CME角宽度、背景太阳风速度及背景X射线通量的分布进行了统计研究.发现非质子耀斑和质子耀斑的积分通量、经度、CME速度和CME角宽度具有明显不同的分布.非质子耀斑大多集中在东部,耀斑积分通量小于0.3J·m-2,CME速度小于1300km·s-1的区域内;质子耀斑大多集中在中部或西部,耀斑积分通量大于0.3J·m-2,CME速度大于1300km·s-1的区域内.质子耀斑伴随的CME角宽度主要集中在360°,非质子耀斑的CME角宽度分布则相对分散.两类耀斑的背景太阳风速度和背景X射线通量分布差别不大.利用两类耀斑各个参量分布上的差异,有望提高X级耀斑预报的准确率.   相似文献   

7.
X-ray flares and acceleration processes are in one complex of sporadic solar events (together with CMEs, radio bursts, magnetic field dissipation and reconnection). This supposes the connection (if not physical, but at least statistical) between characteristics of the solar energetic proton events and flares. The statistical analysis indicates that probability and magnitude of the near-Earth proton enhancement depends heavily on the flare importance and their heliolongitude. These relations may be used for elaboration of the forecasting models, which allow us to calculate probability of the solar proton events from the X-ray observations.  相似文献   

8.
FY-2C卫星太阳X射线探测器性能定标   总被引:5,自引:0,他引:5  
通过具体的实验对FY-2C太阳X射线探测器进行了详细的定标.太阳X射线探测器的传感器采用充Ar气的正比计数器.主要探测能量大于4 KeV的太阳X射线流量.在坪特性、效率、正比性、能道划分、能量分辨率和时间分辨率等6个方面详细介绍了定标的方法及结果.定标结果表明,FY-2C卫星的太阳X射线探测器在各个方面都具有很好的性能.最后对FY-2C的在轨探测数据与GOES卫星进行了比较.GOES卫星的太阳X射线传感器采用电离室.FY-2C的探测结果与GOES的探测结果非常吻合.结果表明,FY-2C太阳X射线探测器可以很好地监测太阳X射线的流量变化,为空间环境监测提供有效的服务.   相似文献   

9.
Observations of hard X-ray (HXR)/γ-ray continuum and γ-ray lines produced by energetic electrons and ions, respectively, colliding with the solar atmosphere, have shown that large solar flares can accelerate ions up to many GeV and electrons up to hundreds of MeV. Solar energetic particles (SEPs) are observed by spacecraft near 1 AU and by ground-based instrumentation to extend up to similar energies as in large SEP events, but it appears that a different acceleration process, one associated with fast coronal mass ejections is responsible. Much weaker SEP events are observed that are generally rich in electrons, 3He, and heavy elements. The energetic particles in these events appear to be similar to those accelerated in flares. The Ramaty high energy solar spectroscopic imager (RHESSI) mission provides high-resolution spectroscopy and imaging of flare HXRs and γ-rays. Such observations can provide information on the location, energy spectra, and composition of the flare accelerated energetic particles at the Sun. Here, preliminary comparisons of the RHESSI observations with observations of both energetic electron and ion near 1 AU are reviewed, and the implications for the particle acceleration and escape processes are discussed.  相似文献   

10.
Recent results of solar system planets observed with the Japanese X-ray astronomy satellite Suzaku are reviewed. Thanks to the low instrumental background and good energy resolution, X-ray CCDs onboard Suzaku are one of the best probes to study diffuse X-ray emission. An overview of the Suzaku data of Jupiter and Earth is presented, along with preliminary results of Mars. Firstly, diffuse hard X-ray emission is discovered in 1–5 keV at Jovian radiation belts. Its spectrum is represented by a power-law continuum with a photon index of ∼1.4. This emission could originate from inverse-Compton scattering of solar photons by tens MeV electrons. Secondly, variable diffuse soft X-rays are serendipitously found during observations in the directions of the north ecliptic pole and galactic ridge. Good time correlations with the solar wind and emission lines found in the X-ray spectra are firm evidences of a solar wind charge exchange emission with Earth’s exosphere. Thirdly, diffuse X-ray emission from Martian exosphere via the solar wind charge exchange is investigated for the first time at solar minimum. A stringent upper limit on the density of the Martian exosphere is placed from the Suzaku data.  相似文献   

11.
太阳耀斑硬X射线高能时延和辐射展宽   总被引:2,自引:2,他引:0       下载免费PDF全文
本文从耀斑高能电子束流与太阳大气相互作用产生硬X射线辐射的基本事实出发,根据观测资料,提出了一个流量与能谱同步变化的注入源函数模型,研究太阳大气(靶物质)密度对耀斑硬X射线时间响应.理论计算与观测事实基本一致.主要计算结果如下:高能时延与辐射展宽是耀斑硬X射线轫致辐射时间特征的二种表现,硬X射线发射区的太阳大气密度越低,高能时延与辐射展宽效应越明显,二者之间存在显著的相关性.   相似文献   

12.
本文根据武昌电离层观象台的LF天波的SPA观测记录,分析了SPA效应的一些统计特性;从理论上对X射线的流量和LF天波的SPA效应之间的定量关系作了进一步研究,并根据LF天波的反射特性和标准大气模式计算了不同季节、不同太阳天顶角、上、下午不同时间的SPA效应的特性,发现SPA效应除具有季节差别外,还有上、下午的不对称性、同时揭示了SPA效应与X射线的对数流量之间的关系呈非线性相关.理论结果与实验结果相比较,两者很好地吻合.   相似文献   

13.
The occurrence of radio signal fading events caused by ionospheric absorption plays an important role in the performance of radio-communication systems. It is necessary to know the magnitude and time-scale of such events in order to specify technical parameters of the communication system to be used. Generally, fading events are associated with solar flares, which are characterized by sudden increase in the solar X-ray flux that causes an increase in the ionization in the lower ionosphere. The abrupt increase of ionization causes the absorption of radio waves propagating in the Earth–ionosphere wave-guide and is reported as radio signal fading events. A simple experiment to monitor the behavior of lower ionosphere has been carried out at the Southern Space Observatory-SSO/INPE (29.43°S, 53.8°W), located in southern Brazil. The experiment is basically a computer controlled radio receiver that records the received signal strength of Amplitude Modulated (AM) radio signals in the HF (High Frequencies) range. We analyzed data of the 6 MHz beacon signal that has been transmitted by a broadcasting radio station located about 400 km from the observation site. In this work we present initial results of daily variation of the received signal strength and fading events associated with solar flares observed in the 6 MHz signal monitored by the experiment during 2001. X-ray solar flux data from the GOES-8 satellite were used to identify X-ray solar bursts associated with solar flares. Based on the one-year data collected by the experiment, a statistical summary of fading occurrences and their correlation with solar flares, as well as the distributions of time-scales and magnitudes of such events are presented.  相似文献   

14.
Radio emissions during and outside solar flares are tracers of energetic electrons from the bottom of the corona to the interplanetary space. This review focusses on impulsive flares, where joint analyses of radio, hard X-ray and γ-ray observations proved to be powerful probes of the properties of accelerated electrons and of the sites in the corona where they are accelerated. Evidence of electron acceleration and transport in the corona from microwave imaging and decimetre wave spectroscopy is reviewed and compared, and recent work on the interpretation of microwave spectra in terms of energetic electron spectra is discussed. The two directions for future instrumentation are the extension to shorter wavelengths, with the aim of probing relativistic electrons, and solar dedicated spectral imaging from centimetric to metric waves to provide a unified view of the acceleration signatures that stem so far from different instruments with either spectroscopic or imaging capabilities.  相似文献   

15.
应用MonteCarlo方法对太阳X射线暴(1-8?及0.5-4?)与地球大气相互作用过程进行跟踪模拟,得到了X射线暴在电离层D层产生的电子产生率,并计算了由此产生的宇宙噪声吸收值。结果与作者在南极观测得到的X射线暴期间宇宙噪声吸收值符合较好.   相似文献   

16.
The Yohkoh soft X-ray telescope obtains several images every 90 minutes. Data from the declining phase of the solar cycle have been used to compare the X-ray signal with other indicators of activity and to study coronal heating. X-ray emission from a north polar coronal hole is found broadly consistent with results of previous EUV observations. In diffuse emission regions, temperature rises to around 2.2 MK and levels off in the height range 1.5 – 1.9 RO. Such emission underlies streamers and may be the source of the low-speed solar wind. X-ray signatures for Coronal Mass Ejection (CME) events which involve the detection of reduced X-ray intensities in the corona, have been developed with Yohkoh data. CME observations are described  相似文献   

17.
天基X射线掠入射式成像望远镜发展现状   总被引:1,自引:1,他引:1  
阐述了太阳X射线成像观测在空间天气预报中的地位和作用,叙述了掠入射式X射线聚焦成像的基本原理,简要介绍了在轨成功运行的天体X射线成像望远镜和太阳X射线成像望远镜的基本设计和技术指标,并介绍了国内正开发研制的专门服务于空间天气预报的太阳X射线成像望远镜基本设计和主要特点.  相似文献   

18.
The use of in-situ resources plays an important role on future extraterrestrial human activities for the facility repair and habitat construction, especially in sustainable space exploration of Moon and Mars. A method of the metal welded with extraterrestrial regolith simulant using solar processing under ambient conditions is presented. Metal parts are made of Q235B ferroalloy and TA2 titanium alloy into standard tensile members according to the ASTM code. They are disconnected from the middle in advance, and then welded together with lunar and Martian regolith simulant under ambient conditions, respectively. The entire welding process and precautions are detailed. Additionally, the mechanical behavior of weldments is characterized regarding their tensile strength. Furthermore, the fusion zone of weldments is studied by Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) measurements. The results show that it is possible to weld metal parts together with extraterrestrial regolith simulant by the solar concentrator. The average ultimate tensile strength of ferroalloy specimens welded with lunar and Martian regolith simulant is 2.94 MPa and 1.66 MPa; The average ultimate tensile strength of titanium alloy specimens welded with lunar and Martian regolith simulant is 4.95 MPa and 2.59 MPa. Moreover, the failure mode of all weldments was brittle failure. The welding joints strength derives from the phases that the regolith as the solder fusing into ferroalloys in a homogeneous way and titanium alloys in an inhomogeneous way. The presented method may provide a new thought for astronaut assistance associating with repairing and fabricating in subsequent Moon and Mars missions.  相似文献   

19.
The main properties of 11622 coronal mass ejections (CMEs) observed by the Solar and Heliospheric Observatory (SOHO) mission’s Large Angle and Spectrometric Coronagraph (LASCO-C2) from January 1996 through December 2006 are considered. Moreover, the extended database of solar proton enhancements (SPEs) with proton flux >0.1 pfu at energy >10 MeV measured at the Earth’s orbit is also studied. A comparison of these databases gives new results concerning the sources and acceleration mechanisms of solar energetic particles. Specifically, coronal mass ejections with width >180° (wide) and linear speed >800 km/s (fast) seem they have the best correlation with solar proton enhancements. The study of some specific solar parameters, such as soft X-ray flares, sunspot numbers, solar flare index etc. has showed that the soft X-ray flares with importance >M5 may provide a reasonable proxy index for the SPE production rate. From this work, it is outlined that the good relation of the fast and wide coronal mass ejections to proton enhancements seems to lead to a similar conclusion. In spite of the fact that in the case of CMEs the statistics cover only the last solar cycle, while the measurements of SXR flares are extended over three solar cycles, it is obvious for the studied period that the coronal mass ejections can also provide a good index for the solar proton production.  相似文献   

20.
The Sun is the nearest astrophysical source with a very intense emission in the X-ray band. The study of energetic events, such as solar flares, can help us to understand the behaviour of the magnetic field of our star. There are in the literature numerous studies published about polarization predictions, for a wide range of solar flares models involving the emission from thermal and/or non-thermal processes, but observations in the X-ray band have never been exhaustive.The gas pixel detector (GPD) was designed to achieve X-ray polarimetric measurements as well as X-ray images for far astrophysical sources. Here we present the possibility to employ this instrument for the observation of our Sun in the X-ray band.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号