首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The conventional analog Adcock-Butler matrix (ABM) antenna array direction finder suffers from systemic errors, component matching problems, and bandwidth limitations. Three digital bearing estimators are developed as candidates to replace the analog signal processing portion of the ABM. Using the same antenna array, they perform all signal processing in the frequency domain, thereby benefitting from the computational efficiency of the fast Fourier transform (FFT) algorithm. The first estimator requires two analog-to-digital converters (A-D) and three antenna elements. It multiplies the difference between the discrete Fourier transforms (DFTs) of the output signals from two antenna elements with that from a third antenna element. At each frequency component, the phase of this product is a function of the bearing. A weighted least squares (LS) fit through all the phase components then gives a bearing estimate. The second estimator is similar to the first but uses three A-D and all four antenna elements. The output signal from the additional antenna element provides an independent estimate of the weights for the LS fit, giving an improvement in accuracy. The third estimator applies the physical constraint existing between the time-difference-of-arrival (TDOA) of a signal intercepted by two perpendicular sets of antenna elements. This yields a better estimator than simple averaging of the bearing from each set of antenna elements. The simulation studies used sinusoids and broadband signals to corroborate the theoretical treatment and demonstrate the accuracy achievable with these estimators. All three direction finders have superior performance in comparison with the analog ABM  相似文献   

2.
何晋飞  陈烜  鲁鹏勇  阮健  常亮 《航空学报》2019,40(5):422590-422590
针对传统伺服阀导控级和功率级平行放置而无法实现插装的问题,研究了一种新型的插装式二维(2D)伺服阀,其特点在于:先导级和功率级集成在单个具有双自由度的阀芯上;力矩马达与阀芯同轴连接,并安装在阀芯末端。通过力矩马达直接驱动阀芯转动,然后利用伺服螺旋机构放大功率并驱动阀芯直线运动,从而控制输出流量。同时可以采用直线位移传感器(LVDT)进行检测阀芯位移,实现位置闭环控制以提高阀的控制性能。为了探究其开环特性,首先建立力矩马达和2D阀的数学模型,求得其开环传递函数;然后,通过仿真了解关键参数对系统动态响应的影响;最后,进行实验研究,验证该阀设计的可行性。实验表明,在满量程输入的情况下,该阀开环时滞环为5%,分辨率≤ 1%,响应时间为10 ms,动态频响为35 Hz;闭环下性能显著提高。插装式2D伺服阀结构简单,尺寸小,质量轻,响应快和控制精度高,在航空航天及军工领域有广阔的应用前景。  相似文献   

3.
Two algorithms are derived for the problem of tracking a manoeuvring target based on a sequence of noisy measurements of the state. Manoeuvres are modeled as unknown input (acceleration) terms entering linearly into the state equation and chosen from a discrete set. The expectation maximization (EM) algorithm is first applied, resulting in a multi-pass estimator of the MAP sequence of inputs. The expectation step for each pass involves computation of state estimates in a bank of Kalman smoothers tuned to the possible manoeuvre sequences. The maximization computation is efficiently implemented using the Viterbi algorithm. A second, recursive estimator is then derived using a modified EM-type cost function. To obtain a dynamic programming recursion, the target state is assumed to satisfy a Markov property with respect to the manoeuvre sequence. This results in a recursive but suboptimal estimator implementable on a Viterbi trellis. The transition costs of the latter algorithm, which depend on filtered estimates of the state, are compared with the costs arising in a Viterbi-based manoeuvre estimator due to Averbuch, et al. (1991). It is shown that the two criteria differ only in the weighting matrix of the quadratic part of the cost function. Simulations are provided to demonstrate the performance of both the batch and recursive estimators compared with Averbuch's method and the interacting multiple model filter  相似文献   

4.
A method of estimating the centroid location of a target utilizing radar scan return amplitude versus angle information is presented. The method is compared with three thresholding estimators and a first moment estimator in a computer-simulated automatic landing system. This new method is the most robust and accurate during periods of low signal-to-noise ratio. In periods of high signal-to-noise ratio the method has less error than the thresholding methods and is similar in accuracy to the first moment estimator. Furthermore, the number of pulse transmissions required to obtain a desired level of performance in noise is much less than that needed for the thresholding methods and the first moment estimator employed in this simulation.  相似文献   

5.
We present the development and implementation of a multisensor-multitarget tracking algorithm for large scale air traffic surveillance based on interacting multiple model (IMM) state estimation combined with a 2-dimensional assignment for data association. The algorithm can be used to track a large number of targets from measurements obtained with a large number of radars. The use of the algorithm is illustrated on measurements obtained from 5 FAA radars, which are asynchronous, heterogeneous, and geographically distributed over a large area. Both secondary radar data (beacon returns from cooperative targets) as well as primary radar data (skin returns from noncooperative targets) are used. The target IDs from the beacon returns are not used in the data association. The surveillance region includes about 800 targets that exhibit different types of motion. The performance of an IMM estimator with linear motion models is compared with that of the Kalman filter (KF). A number of performance measures that can be used on real data without knowledge of the ground truth are presented for this purpose. It is shown that the IMM estimator performs better than the KF. The advantage of fusing multisensor data is quantified. It is also shown that the computational requirements in the multisensor case are lower than in single sensor case, Finally, an IMM estimator with a nonlinear motion model (coordinated turn) is shown to further improve the performance during the maneuvering periods over the IMM with linear models  相似文献   

6.
Beginning with the derivation of a least squares estimator that yields an estimate of the acceleration input vector, this paper first develops a detector for sensing target maneuvers and then develops the combination of the estimator, detector, and a "simple" Kalman filter to form a tracker for maneuvering targets. Finally, some simulation results are presented. A relationship between the actual residuals, assuming target maneuvers, and the theoretical residuals of the "simple" Kalman filter that assumes no maneuvers, is first formulated. The estimator then computes a constant acceleration input vector that best fits that relationship. The result is a least squares estimator of the input vector which can be used to update the "simple" Kalman filter. Since typical targets spend considerable periods of time in the constant course and speed mode, a detector is used to guard against automatic updating of the "simple" Kalman filter. A maneuver is declared, and updating performed, only if the norm of the estimated input vector exceeds a threshold. The tracking sclheme is easy to implement and its capability is illustrated in three tracking examples.  相似文献   

7.
The authors describe an experimental study of adaptive pointing and tracking control for flexible spacecraft conducted on a complex ground experiment facility. The algorithm used is based on a multivariable direct model reference adaptive control law. Several experimental validation studies performed using this algorithm for vibration damping and robust regulation are extended by addressing the pointing and tracking problem. As is consistent with an adaptive control framework, the plant is assumed to be poorly known to the extent that only system level knowledge of its dynamics is available. Explicit bounds on the steady-state pointing error are derived as functions of the adaptive controller design parameters. It is shown that good tracking performance can be achieved in an experimental setting by adjusting adaptive controller design weightings according to the guidelines indicated by the analytical expressions for the error  相似文献   

8.
9.
In this paper we present an estimation algorithm for tracking the motion of a low-observable target in a gravitational field, for example, an incoming ballistic missile (BM), using angle-only measurements. The measurements, which are obtained from a single stationary sensor, are available only for a short time. Also, the low target detection probability and high false alarm density present a difficult low-observable environment. The algorithm uses the probabilistic data association (PDA) algorithm in conjunction with maximum likelihood (ML) estimation to handle the false alarms and the less-than-unity target detection probability. The Cramer-Rao lower bound (CRLB) in clutter, which quantifies the best achievable estimator accuracy for this problem in the presence of false alarms and nonunity detection probability, is also presented. The proposed estimator is shown to be efficient, that is, it meets the CRLB, even for low-observable fluctuating targets with 6 dB average signal-to-noise ratio (SNR). For a BM in free flight with 0.6 single-scan detection probability, one can achieve a track detection probability of 0.99 with a negligible probability of false track acceptance  相似文献   

10.
We present an algorithm for identifying the parameters of a proportional navigation guidance missile (pursuer) pursuing an airborne target (evader) using angle-only measurements from the latter. This is done for the purpose of classifying the missile so that appropriate counter-measures can be taken. Mathematical models are constructed for a pursuer with a changing velocity, i.e., a direction change and a speed change. Assuming the pursuer is launched from the ground with fixed thrust, its motion can be described by a four-dimensional parameter vector consisting of its proportional navigation constant and three parameters related to thrusting. Consequently, the problem can be solved as a parameter estimation problem, rather than state estimation and we provide an estimator based on maximum likelihood (ML) to solve it. The parameter estimates obtained can be mapped into the time-to-go until intercept estimation results are presented for different scenarios together with the Cramer-Rao lower bound (CRLB), which quantifies the best achievable estimation accuracy. The accuracy of the time-to-go estimate is also obtained. Simulation results demonstrate that the proposed estimator is efficient by meeting the CRLB.  相似文献   

11.
This paper describes data-aided signal level and noise variance estimators for Gaussian minimum shift keying (GMSK) when the observations are limited to the output of a filter matched to the first pulse-amplitude modulation (PAM) pulse in the equivalent PAM representation. The estimators are based on the maximum likelihood (ML) principle and assume burst-mode transmission with known timing and a block of L0 known bits. While it is well known that ML estimators are asymptotically unbiased and efficient, the analysis quantifies the rate at which the estimators approach these asymptotic properties. It is shown that the carrier phase, amplitude, and noise variance estimators are unbiased and can achieve their corresponding Cramer-Rao bounds with modest combinations of signal-to-noise ratio and observation length. The estimates are used to estimate the signal-to-noise ratio. It is shown that the mean squared error performance of the ratio increases with signal-to-noise ratio while the mean squared error performance of the ratio in decibels decreases with signal-to-noise ratio. Simulation results are provided to confirm the accuracy of the analytic results.  相似文献   

12.
The performance of a square law time-of-arrival (TOA) estimator that has been proposed for use in ASTRO-DABS, part of a possible satellite-based fourth generation air traffic control system is considered. The transmitted message consists of a pulse amplitude modulated (PAM) ranging sequence that, due to transmitter characteristics, is corrupted by an unknown frequency offset. The optimum TOA estimator, for the case of no frequency uncertainty, is first presented, together with a lower bound on the variance of the estimate generated. This is followed by the consideration of a suboptimum TOA estimator for which a high signal-to-noise ratio (SNR) performance analysis is carried out; here, the effects of frequency uncertainty are included. Next, the zero-crossing properties of the derivative of the (suboptimum) estimation statistic are presented and the results used to derive an upper bound to the TOA estimate variance that is valid for all SNR values. This latter result is significant because it displays the system threshold effect and complements performance lower bounds that may be derived via other methods. In addition, the method presented here may be applied to other optimum and suboptimum systems where a discrete set of parameters is to be estimated.  相似文献   

13.
For pt. III see ibid., vol. 35, pp. 225-41 (1999). A variable-structure multiple-model (VSMM) estimator, called model-group switching (MGS) algorithm, has been presented in Part III, which is the first VSMM estimator that is generally applicable to a large class of problem with hybrid (continuous and discrete) uncertainties. In this algorithm, the model-set is made adaptive by switching among a number of predetermined groups of models. It has the potential to be substantially more cost-effective than fixed-structure MM (FSMM) estimators, including the Interacting Multiple-Model (IMM) estimator. A number of issues of major importance in the application of this algorithm are investigated here, including the model-group adaptation logic and model-group design. The results of this study are implemented via a detailed design for a problem of tracking a maneuvering target using a time-varying set of models, each characterized by a representative value of the expected acceleration of the target. Simulation results are given to demonstrate the performance (based on more reasonable and complete measures than commonly used rms errors alone) and computational complexity of the MGS algorithm, relative to the fixed-structure IMM (FSIMM) estimator using all models, under carefully designed and fair random and deterministic scenarios  相似文献   

14.
The objectives of this paper are two. The first is to show that a gated phase-locked loop (GPLL) is a tracking device whose operation approximates that of a maximum likelihood estimator of the phase of a pulsed sinusoid imbedded in noise. The second is to determine the behavior of theb loop in the presence of noise. It is found that the loop performance is equivalent to that of a continuous phase-locked loop driven by the same noise, plus a continuous sinusoid which has the same power as the pulsed sinusoid at the input of the GPLL.  相似文献   

15.
赵鹏兵  史耀耀 《航空学报》2014,35(2):555-566
A轴单元作为五轴数控机床的关键功能部件,其控制精度直接影响工件的加工精度和表面质量。针对系统参数摄动和不确定性切削负载对A轴伺服系统控制精度的影响,分析了A轴驱动系统的动静态性能,讨论了驱动扭矩、负载扭矩、运动方向和系统参数之间的相互关系,并建立了系统的非线性动力学模型。基于该动力学模型,设计了自适应模糊滑模控制器(AFSMC),采用模糊系统对滑模控制律中的非线性函数项进行自适应逼近,并基于Lyapunov理论设计了模糊系统中可调参数的自适应律,同时,在滑模控制(SMC)的切换控制部分采用了指数趋近律。实验结果表明,所设计的AFSMC对不确定性负载扭矩和系统参数摄动具有较强的鲁棒性。与传统滑模控制(TSMC)相比,其在有效减小控制输入抖振的同时,使得跟踪控制精度提高了14.54%。  相似文献   

16.
A new attitude controller is proposed for spacecraft whose actuator has variable input saturation limit. There are three identical flywheels orthogonally mounted on board. Each rotor is driven by a brushless DC motor (BLDCM). Models of spacecraft attitude dynamics and flywheel rotor driving motor electromechanics are discussed in detail. The controller design is similar to saturation limit linear assignment. An auxiliary parameter and a boundary coefficient are imported into the controller to guarantee system stability and improve control performance. A time-varying and state-dependent flywheel output torque saturation limit model is established. Stability of the closed-loop control system and asymptotic convergence of system states are proved via Lyapunov methods and LaSalle invariance principle. Boundedness of the auxiliary parameter ensures that the control objective can be achieved, while the boundary parameter’s value makes a balance between system control performance and flywheel utilization efficiency. Compared with existing controllers, the newly developed controller with variable torque saturation limit can bring smoother control and faster system response. Numerical simulations validate the effectiveness of the controller.  相似文献   

17.
《中国航空学报》2020,33(7):1867-1876
In order to compensate for the disturbance of wide variation in rotor demanded torque on power turbine speed and realize the fast response control of turboshaft engine during variable rotor speed, a cascade PID control method based on the acceleration estimator of gas turbine speed (Ngdot) and rotor predicted torque feedforward is proposed. Firstly, a two-speed Dual Clutch Transmission (DCT) model is applied in the integrated rotor/turboshaft engine system to achieve variable rotor speed. Then, an online estimation method of Ngdot based on the Linear Quadratic Gaussian with Loop Transfer Recovery (LQG/LTR) is proposed for power turbine speed cascade control. Finally, according to the cascade PID controller based on Ngdot estimator, a rotor demanded torque predicted method based on the Min-batch Gradient Descent-Neural Network (MGD-NN) is put forward to compromise the influence of rotor torque interference. The simulation results show that compared with cascade PID controller based on Ngdot estimator and the one combined with collective pitch feedforward control, the novel control method proposed can reduce the overshoot of power turbine speed by more than 20%, which possesses faster response, superior dynamic effect and satisfactory robustness performance. The control method proposed can realize the fast response control of turboshaft engine with variable rotor speed better.  相似文献   

18.
State Estimation for Discrete Systems with Switching Parameters   总被引:1,自引:0,他引:1  
The problem of state estimation for discrete systems with parameters which may be switching within a finite set of values is considered. In the general case it is shown that the optimal estimator requires a bank of elemental estimators with its number growing exponentially with time. For the Markov parameter case, it is found that the optimal estimator requires only N2 elemental estimators where N is the number of possible parameter values.  相似文献   

19.
We present a new batch-recursive estimator for tracking maneuvering targets from bearings-only measurements in clutter (i.e., for low signal-to-noise ratio (SNR) targets), Standard recursive estimators like the extended Kalman Iter (EKF) suffer from poor convergence and erratic behavior due to the lack of initial target range information, On the other hand, batch estimators cannot handle target maneuvers. In order to rectify these shortcomings, we combine the batch maximum likelihood-probabilistic data association (ML-PDA) estimator with the recursive interacting multiple model (IMM) estimator with probabilistic data association (PDA) to result in better track initialization as well as track maintenance results in the presence of clutter. It is also demonstrated how the batch-recursive estimator can be used for adaptive decisions for ownship maneuvers based on the target state estimation to enhance the target observability. The tracking algorithm is shown to be effective for targets with 8 dB SNR  相似文献   

20.
宽带信号近似最大似然方位估计快速算法   总被引:1,自引:0,他引:1  
金勇  黄建国  张立杰 《航空学报》2008,29(5):1264-1268
 针对短采样宽带信号近似最大似然方位估计(AML)计算量大的问题,将马尔可夫蒙特卡罗(MCMC)方法与近似最大似然方位估计相结合,提出一种基于完美抽样的近似最大似然方位估计快速算法(PAML)。该算法将AML算法的空间谱函数作为信号的概率分布函数,并利用完美抽样方法从该概率分布函数中抽样。与AML和遗传算法的对比实验研究表明,两目标情况下PAML算法在中低信噪比条件下的估计性能与AML和遗传算法性能相当,而计算量分别是二者的1/24和1/3。随着目标个数的增加,PAML算法的计算量优势将更加明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号