首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 638 毫秒
1.
在水槽中和风洞中分别进行了流动显示和动态测压实验,目的是研究三角翼前缘涡破裂点的脉动现象.对流动显示图片中涡的破裂点位置进行统计和频谱分析,表明破裂点振荡存在双主频特征,位于0.07位置的主频对应着螺旋—泡—螺旋的转化过程,位于0.2~0.4之间的主频对应着螺旋形态破裂本身的小幅振动.对统计的破裂点位置数据做低通滤波后进行相关性分析,还表明了三角翼左右2个前缘涡的破裂点位置信号具有负相关性.进行三角翼表面动态压力测量,对压力数据低通滤波后做相关性分析,发现相同的一条前缘涡的动态压力信号在整个翼面上都具有高度的相关性.   相似文献   

2.
双三角翼外翼前缘钝度对气动特性的影响   总被引:3,自引:2,他引:3  
笔者对75°/60°双三角翼模型进行了水洞流态观测实验、低速风洞测压实验、空间流场测量实验,研究了双三角翼外翼前缘钝度对气动特性影响,包括对涡态的影响。这里发表的是第一期实验的初步结果。结果表明,外翼前缘钝化使内翼涡涡核推迟破裂,外翼前缘钝化主要影响双三角翼前缘折点后的后半翼上表面的C_p分布,特别是在涡发生破裂后,其影响较大。  相似文献   

3.
本文中利用三角翼前缘涡襟翼的强制振动来推迟涡破裂。流场显示实验结果表明,在有强制扰动时,集中涡显示出两种不同形式的破裂,可分成六种不同的破裂形态。非定常集中涡的一个破裂过程涉及几种破裂形态之间的转换。涡襟翼振动产生的非定常效应对涡破裂的影响与三角翼后掠角有密切的关系,随后掠角增大非定常效应的影响变小。就实验迎角范围而言(α<35°),对50°后掠角三角翼,涡襟翼振动可显著推迟涡破裂;但对70°后掠角三角翼,振动却能促进涡的破裂。涡襟翼振动改变了集中涡的性态,使集中涡趋向于和前缘平行。振动对涡破裂的作用部分地与这种效应有关。  相似文献   

4.
绕三角翼流动中的非定常现象研究   总被引:2,自引:0,他引:2  
利用流动显示技术、片光技术及PIV技术,对三角翼面上的各种非定常特性做了研究.分别对涡层中的小涡结构,二次涡同主涡相互作用所引起的二次涡的喷射效应,螺旋破裂扰动的非定常特性,涡破裂点沿轴方向振动的非定常特性,以及完全分离流中的非定常特征进行了较为细致的研究,给出了不同扰动的频率特性.   相似文献   

5.
粗糙带对某型号飞机简化模型机头流态的影响   总被引:1,自引:0,他引:1  
在水洞中应用染色液流动显示技术对某型号飞机简化模型机头流态进行了研究,详细观察了机头两侧粗糙带和"只"字型粗糙带对机头流态的影响.实验结果表明,风洞实验所得力矩曲线受雷诺数影响大的攻角范围与机头涡破裂后打在座舱上的攻角及机头涡在座舱前严重掺混的攻角相联系.水洞实验中,来流速度为20cm/s、粗糙高度为0.8mm时流态随攻角的变化规律可用来解释风洞实验结果中力矩曲线的分散性.  相似文献   

6.
双三角翼外翼前缘钝化对涡流特性的影响   总被引:1,自引:1,他引:1  
通过风洞试验,利用7孔探头对75°/45°和75°/60°两种典型双三角翼进行了空间流场测量,研究了双三角翼前缘形状对大迎角涡流特性的影响.试验结果表明,双三角翼外翼前缘钝化使双涡态的双三角翼内、外翼涡互相靠拢、增加干扰,当出现合并涡态时,使合并涡涡核向内下方偏移;外翼前缘钝化使外翼涡或合并涡的Cp0、Vx较尖前缘时为高,最终使外翼涡或合并涡推迟破裂.  相似文献   

7.
为了抑制三角翼前缘涡破裂的发生,研究了大攻角下(30°~50°)尖顶襟翼对70°三角翼前缘涡破裂的影响.在静态实验情况下,尖顶弯折对三角翼前缘涡破裂影响的参数有2个:尖顶襟翼弯折的角度及其长度.染色液流态显示结果表明:尖顶襟翼的向下弯折减小了靠近襟翼翼面的有效攻角,从而推迟了前缘涡破裂的发生,涡破裂位置随弯折角的变化呈非线性变化且弯折襟翼越长效果越好,α=35°时两个弯折组合的效果要比单个弯折的好.  相似文献   

8.
为了研究三角翼后缘对称喷流对前缘涡破裂位置和旋涡结构的影响,通过高分辨率的N-S方程数值模拟方法,对60°后掠角三角翼后缘有对称喷流及无喷流情况下的绕流进行了研究.结果表明,后缘喷流速度与自由来流速度之比影响前缘涡破裂的位置.与无喷流情况相比,喷流与来流速度比的不同造成了涡破裂的提前或推后.而与传统结论有所不同的是,并非所有的后缘喷流都能延迟涡的破裂.另外,后缘对称喷流对涡轴位置的影响很小.后缘对称喷流不改变三角翼前缘涡横截面流动拓扑结构的变化规律,但影响极限环的扩张速度.   相似文献   

9.
双三角翼大迎角翼面压强分布与涡态相关分析   总被引:1,自引:0,他引:1  
将双三角翼翼面测压试验结果与空间涡态观察测量结果进行了定性的相关对比分析,分析表明:垂直于双三角翼翼面的典型横截面上展向压强系数Cp分布与空间涡态有明显的对应关系,Cp分布的峰值数目反映了双三角翼的双涡态和单涡态,Cp峰值随α变化反映了涡强随α的变化,Cp峰值所在展向位置反映着涡核的展向位置,Cp峰形的平坦反映了涡的破裂.  相似文献   

10.
通过在三角翼上游加入干扰圆柱的风洞实验方法,研究了来流干扰对微小型飞行器MAV(Micro Air Vehicle)气动特性的影响.结果表明,在刚性和弹性三角翼顶点上游加入圆柱干扰时,两者均出现缓失速,刚性翼产生缓失速与干扰圆柱尾流关系密切,弹性翼的缓失速不仅与此有关,还与弹性翼的振动有关.无干扰或在机翼顶点加入干扰时,在攻角为4°~18°内弹性翼的升力系数比刚性翼的要大,但升阻比相对要小.由于弹性翼的振动与机翼绕流结构、气动力之间的耦合,弹性翼顶点与翼尖振动的主频随着攻角增大呈规律性的变化,失速攻角附近翼尖的振动主频是其涡脱落频率.   相似文献   

11.
旋涡发生器对机翼最大升力和失速迎角的影响   总被引:2,自引:0,他引:2  
对一个展长为500?mm,弦长为250?mm,翼型为NACA0012的机翼模型,安装各种小三角翼旋涡发生器作低速风洞测力实验,研究小三角翼各种弯度和它与机翼的相对位置对机翼最大升力和失速迎角的影响.实验结果表明当小三角翼与机翼在某个最佳相对位置时,机翼最大升力和失速迎角有个最大的增加.当小三角翼与机翼的相对位置不变时,各种弯度的小三角翼都可以使机翼最大升力和失速迎角有较大的增加,并且相互差别不大.  相似文献   

12.
为了研究涡街流量计尾迹振荡特征,采用集总经验模态分解(EEMD)-Hilbert谱方法,对测量介质为空气、流量范围为10.58~220 m~3/h的涡街流量计管壁差压信号进行处理,首先用EEMD方法对管壁差压信号进行分解,得到固有模态分量,然后对分解后的各个分量进行Hilbert变换,得到Hilbert谱和边际谱,进而提取管壁差压信号的旋涡脱落频率。比较了Fourier变换与EEMD-Hilbert谱方法在信号去噪和频率提取方面的性能。结果表明:EEMD-Hilbert谱方法可有效去除叠加在实际涡街成分之中的噪声,能够较完整保留尾迹振荡的固有成分;在流量较低时,EEMD-Hilbert谱方法对尾迹振荡频率的提取精度比Fourier变换高30%以上,有效拓展了涡街流量计的测量下限;通过计算能量比,揭示了EEMD-Hilbert谱方法提高频率提取精度的原因,即EEMD-Hilbert谱方法降低了信噪比;Hilbert谱直观表示信号的时间-频率-能量关系。  相似文献   

13.
攻角拉起时前体非对称涡诱导机翼摇滚运动   总被引:1,自引:0,他引:1  
针对目前前体非对称涡诱导机翼摇滚研究时攻角往往处于静态而没有考虑攻角动态拉起的问题,在北航D4风洞中采用细长旋成体与30°后掠翼的组合体模型,通过不同拉起速度下的机翼摇滚运动实验,分析了攻角拉起速度对前体非对称涡诱导机翼摇滚运动的影响及影响产生的原因;随后通过在快速拉起摇滚运动过程中进行模型表面压力测量,研究了快速拉起机翼摇滚的流动机理.实验结果表明,由于机翼摇滚运动的时间随攻角拉起速度增加而减少,使得在3个不同的拉起速度分区内,摇滚运动呈现为不同的运动形态,其中第3个快速拉起分区内的摇滚运动为与攻角静态时完全不同的类正弦摇滚运动形态.与攻角静态时机翼摇滚的流动机理不同,快速拉起时这种类正弦摇滚运动主要源于前体非对称涡随攻角的演化,前体非对称涡随滚转角的涡型切换不再重要.   相似文献   

14.
提出了双耦合Duffing振子仿真系统检测小通道气液两相流型信号的方法。搭建了双耦合Duffing振子仿真系统,针对流型信号的特征确定了3个关键参数:阻尼比、耦合系数和频率,并应用典型混沌信号Lorenz和R9ssler对该仿真系统进行了性能检测。在两相流型信号检测时,提取了振子振动的瞬时速度和位移2个特征值,并基于特征值对流型动力学特性及流型辨识进行了深入研究。结果表明:通过对典型混沌系统的检测验证,发现本文检测方法具有较好的抗噪能力,能够较好地表征典型信号的混沌特性。提取的2个特征值能够揭示出小通道气液两相流型转变过程中气液两相间的作用机理。系统的振子振动瞬时速度结合位移实现了小通道气液两相流典型流型的准确识别,有助于其他不同介质的多相流动特性分析与流型辨识。  相似文献   

15.
    
为了实现空空导弹的高机动性,基于模型后体直径D以及试验风速的雷诺数ReD=1.54×105,通过风洞测力和测压试验对钝头旋成体背涡流动特性随迎角的演化形式进行了研究。根据对模型不同迎角下所受侧向力、截面压力分布以及截面侧向力系数随时间波动情况的分析,确定了不同迎角下的钝头旋成体背涡流动形式。以此划分了4个迎角分区:附着流动区(α≤10°)、对称涡流动区(10°<α≤20°)、定常非对称流动区(20°<α≤50°)和非定常非对称流动区(α>50°)。对各迎角分区的背涡流动特性进行了详细讨论。  相似文献   

16.
Winds near the ground on Titan for the Dragonfly landing site (near Selk crater, 10°N) for the mid-2030s (Titan late southern summer, Ls ~ 310°) are estimated for mission design purposes. Prevailing winds due to the global circulation are typically 0.5 m/s, and do not exceed 1 m/s. Local terrain-induced flows such as slope winds appear to be similarly capped at 1 m/s. At various landing sites and times, these two contributions will vectorially combine to yield steady winds (for part of a Titan day, Tsol) of up to 2.0 m/s, but typically less – the slope wind component will be small in the mid-morning. In early afternoon, as on Earth and Mars, solar-driven convection in the planetary boundary layer will cause wind fluctuations of the order of 0.1 m/s, varying with a typical timescale of ~1000 s. Occasionally this convection organizes into coherent ‘dust devil’ vortices: detectable vortices with speeds of 1 m/s are predicted about once per Titan day. We have introduced the convective velocity scale combined with the advection time of PBL cells as a metric to derive the frequency of occurrence of gusts associated with convective vortices (‘dust devils’). Maximum possible vortex winds on Titan of 2.8 m/s may be expected only once per 40 Tsols, and define the maximum wind (4.8 m/s at 10 m height) that Dragonfly must tolerate without damage. The applicability of different wind combinations, scaled to the height of relevant Dragonfly components above the ground (e.g. the maximum corresponds to 3.9 m/s at 1.3 m height) by a logarithmic wind profile, to Dragonfly design and operations are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号