首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 707 毫秒
1.
In 1964, during flights of the ELECTRON satellites the narrow belts of energetic electrons (E e ≈ 6MeV) have been discovered in the Earth’s magnetosphere at L ≈ 2.75. The same structures approximately at the same magnetic shells were found in 2004 by the CORONAS-F and SERVIS-1 satellites. A comparison of the results of these experiments is presented. It is shown that the additional narrow belts of energetic electrons occur after intense magnetic storms (D st > 100 nT), in our cases, having a double-triple structure. The lifetime of these belts is a few months and their disappearance had a gradual character. The obtained results separated in time by 40 years suggest the constancy of the sources of particles of the Earth’s radiation belts and processes occurring in the magnetosphere, which ensures not only existence of the radiation belts, but also the recurrence of various exotic phenomena in the belts similar to the belt of energetic electrons at the inner magnetic shells.  相似文献   

2.
Factors of radiation environment in near-Earth space in a period from December 1 to 10, 2014 have been analyzed, which could affect serviceability of the onboard systems of Vernov spacecraft.  相似文献   

3.
4.
The variations in the spatial structure and time in electron fluxes with E = 235–300 keV in the slot region (2 < L < 3) between the radiation belts in the period of November 1, 2014 through December 8, 2014 during weak and moderate geomagnetic disturbances (Kp < 4, Dst >–60 nT) are analyzed based on the data of the RELEC complex on board the Vernov satellite (the height and inclination of the orbit are from 640 to 830 km and 98.4°, respectively). Irregular increases in the fluxes of such electrons and formation of a local maximum at L ~ 2.2–3.0 were observed. It has been shown that the intensity of this maximum is inversely proportional to the L value and grows with an increase in the geomagnetic activity level. New features discovered for the first time in the dynamics of radiation belt electrons manifest in the variations in the local structure and dynamics of fluxes of subrelativistic electrons in the slot region.  相似文献   

5.
In the context of the restricted circular three-body problem a method for constructing families of periodic orbits is described. Each orbit contains a segment of transfer from artificial satellite orbit of a smaller body to an orbit around L 1 or L 2 points of the Sun-Earth and Earth-Moon systems, a segment of multiple flyby of this libration point, and a segment of return to the artificial satellite orbit. Dependences of velocities at the pericenter on the pericenter radius are given.  相似文献   

6.
A new kinetic model of distribution of interstellar hydrogen atoms in the heliosphere is suggested in this paper. It takes into account global effects associated with charge exchange of interstellar atoms near the heliospheric boundary. The constructed model allows one to find efficiently the detailed distribution of hydrogen atoms over space and velocities. For the axisymmetric steady-state case a comparison is made of the parameters of interstellar hydrogen atoms that were obtained using the classical hot model, two modifications of the improved hot model, and a global self-consistent kinetic gas-dynamic model of the heliospheric interface. The results of calculations of the spectral moments of scattered solar Lα radiation are presented. They were derived on the basis of different models of distribution of hydrogen atoms in the heliosphere.  相似文献   

7.
The results of reconstructing the uncontrolled rotational motion of the Aist small spacecraft prototype during its flight in early 2014 have been presented. The reconstruction was carried out by processing data from onboard measurements of the Earth’s magnetic field. The processing procedure used portions of data covering intervals of time with durations ranging from a few dozen minutes to three hours. Data obtained in each such interval were processed jointly by the least-squares method by integrating the equations of the satellite motion relative to the center of mass. The initial conditions of the motion and the parameters of the used mathematical model during processing have been estimated. The results of processing for several data intervals have provided a fairly complete picture of the satellite motion. This was the weakly disturbed Euler–Poinsot motion.  相似文献   

8.
As a result of processing long (up to 144 h) series of sunspot magnetograms obtained on the SOHO (Solar and Heliospheric Observatory) spacecraft with the MDI (Michelson Doppler Imager) instrument it is shown that the mode with a period of 800–1300 min is a limiting low-frequency oscillation mode of the magnetic field of a sunspot as a whole. Its period is essentially and nonlinearly depends on the sunspot magnetic field strength. In addition to this mode, higher harmonics are also revealed in the sunspot oscillation spectra in the bands 40–45, 60–80, 135–170, 220–250, and 480–520 min. The oscillation power in these bands monotonically and rapidly decreases with increasing frequency, which is characteristic for overtones arising due to the nonlinear nature of oscillations. The limiting oscillation mode stably exists in sunspots for 1.5–2 days, which coincides with the average lifetime of a supergranular cell. The mode with the period of 35–48 h observed in the power spectrum is not an eigen mode of sunspots, because its period is independent of its magnetic field strength. Probably, it occurs as a quasiperiod of an external exciting force caused by disturbances from supergranular cells surrounding the sunspot.  相似文献   

9.
10.
11.
Results of observations of ion-cyclotron (IC) waves onboard the ST-5 satellites in the topside ionosphere (heights from a few hundred up to thousands of km) are presented. In this project, three identical micro-satellites were located during three months in 2006 in almost identical orbits with distances between them from first thousands to hundreds of km. All ion-cyclotron wave packets detected by two-three probes were observed at crossing one and the same latitude, which manifests their narrow localization in latitude with a characteristic scale from the first tens to 100 km. In no event IC waves were recorded with comparable amplitudes by all three satellites. At the same time, in the case of ST-5 flight near the ground-based induction magnetometer, a long emission in the same frequency range on the ground corresponded to a burst of IC waves in the topside ionosphere. This can indicate to the fact that an IC instability develops not continuously, but in the pulsing regime with a characteristic time of up to ∼10 min. A change in the rotation direction when a satellite crosses the wave structure is a characteristic feature of the polarization structure of registered transverse waves. The detected effects are discussed from the point of view of the existing models of generation and waveguide propagation of IC waves.  相似文献   

12.
When designing the radio-electronic equipment for long-term operation in a space environment, one of the most important problems is a correct estimation of radiation stability of its electric and radio components (ERC) against radiation-stimulated doze failures and one-particle effects (upsets). These problems are solved in this paper for the integrated microcircuits (IMC) of various types that are to be installed onboard the Fobos-Grunt spacecraft designed at the Federal State Unitary Enterprise “Lavochkin Research and Production Association.” The launching of this spacecraft is planned for 2009.__________Translated from Kosmicheskie Issledovaniya, Vol. 43, No. 3, 2005, pp. 237–239.Original Russian Text Copyright © 2005 by Kuznetsov, Popov, Khamidullina.  相似文献   

13.
14.
Equations of motion for the perturbed circular restricted three-body problem have been regularized in canonical variables in a moving coordinate system. Two different L-matrices of the fourth order are used in the regularization. Conditions for generalized symplecticity of the constructed transform have been checked. In the unperturbed case, the regular equations have a polynomial structure. The regular equations have been numerically integrated using the Runge–Kutta–Fehlberg method. The results of numerical experiments are given for the Earth–Moon system parameters taking into account the perturbation of the Sun for different L-matrices.  相似文献   

15.
The results of a preliminary analysis of microperturbations on the International Space Station during physical exercises of the crew are presented. The goal of this paper is to identify the parameters of perturbations when physical exercises are performed. The results of measurements by sensors of microaccelerations of both Russian and American segments during physical exercises in the service module of the Russian segment are analyzed.  相似文献   

16.
We have reconstructed the uncontrolled rotational motion of the Progress M-29M transport cargo spacecraft in the single-axis solar orientation mode (the so-called sunward spin) and in the mode of the gravitational orientation of a rotating satellite. The modes were implemented on April 3–7, 2016 as a part of preparation for experiments with the DAKON convection sensor onboard the Progress spacecraft. The reconstruction was performed by integral statistical techniques using the measurements of the spacecraft’s angular velocity and electric current from its solar arrays. The measurement data obtained in a certain time interval have been jointly processed using the least-squares method by integrating the equations of the spacecraft’s motion relative to the center of mass. As a result of processing, the initial conditions of motion and parameters of the mathematical model have been estimated. The motion in the sunward spin mode is the rotation of the spacecraft with an angular velocity of 2.2 deg/s about the normal to the plane of solar arrays; the normal is oriented toward the Sun or forms a small angle with this direction. The duration of the mode is several orbit passes. The reconstruction has been performed over time intervals of up to 1 h. As a result, the actual rotational motion of the spacecraft relative to the Earth–Sun direction was obtained. In the gravitational orientation mode, the spacecraft was rotated about its longitudinal axis with an angular velocity of 0.1–0.2 deg/s; the longitudinal axis executed small oscillated relative to the local vertical. The reconstruction of motion relative to the orbital coordinate system was performed in time intervals of up to 7 h using only the angularvelocity measurements. The measurements of the electric current from solar arrays were used for verification.  相似文献   

17.
The results of reconstruction of uncontrolled rotational motion of the Foton-12 satellite using the measurement data of onboard sensors are presented. This problem has already been solved successfully several years ago. The satellite motion was reconstructed using the data of measuring the Earth’s magnetic field. The data of measuring the angular velocity and microaccelerations by the QSAM system were actually not used for this purpose, since these data include a clearly seen additional component whose origin was at that time unclear. This component prevented one from using these data directly for reconstruction of the angular motion. Later it became clear that the additional component was caused by the Earth’s magnetic field. Discovery of this fact allowed us to make necessary corrections when processing the QSAM system data and to use them for reconstruction of rotational motion of Foton-12. Below, a modified method of processing the QSAM system data is described together with the results of its application. The main result is obtained by comparing the motion reconstructed from measurements of angular velocity or acceleration with that found by way of processing the measurements of the Earth’s magnetic field. Their coincidence turned out to be rather accurate.  相似文献   

18.
The results of designing the attitude control system of the first Russian nanosatellite TNS-0 no. 1 providing orientation of its longitudinal axis along the local geomagnetic field induction vector are presented. The system consists of a permanent magnet and two sets of hysteresis rods. The magnetic and geometric parameters of the magnet and rods are calculated. The influence of the permanent magnet field on the hysteresis rods and mutual influence of the rods in the case of compact satellite packaging are analyzed. Examples of calculations of transient processes and steady-state angular satellite motion are presented.  相似文献   

19.
The results of investigating free oscillations of the International Space Station construction appearing during spacecraft docking and undocking are described. The study is carried out using the measurement data of the low-frequency MAMS accelerometer. Several intervals of measurements performed in 2005 and 2006 were chosen to be studied. For chosen intervals, only the data intervals corresponding to the process of free attenuation of the oscillations construction elements were analyzed. Characteristic frequencies of elastic oscillations of the station construction and attenuation coefficients corresponding to them are found. The comparative analysis of the results obtained for various docking ports (nodes) is carried out. The described study is performed as a part of the technical experiment “The ISS Environment” carried out onboard the station in accordance with the Russian program of scientific and engineering experiments.  相似文献   

20.
The RELEС scientific payload of the Vernov satellite launched on July 8, 2014 includes the DRGE spectrometer of gamma-rays and electrons. This instrument comprises a set of scintillator phoswich-detectors, including four identical X-ray and gamma-ray detector with an energy range of 10 kev to 3 MeV with a total area of ~500 cm2 directed to the atmosphere, as well as an electron spectrometer containing three mutually orthogonal detector units with a geometric factor of ~2 cm2 sr. The aim of a space experiment with the DRGE instrument is the study of fast phenomena, in particular Terrestrial gamma-ray flashes (TGF) and magnetospheric electron precipitation. In this regard, the instrument provides the transmission of both monitoring data with a time resolution of 1 s, and data in the event-by-event mode, with a recording of the time of detection of each gamma quantum or electron to an accuracy of ~15 μs. This makes it possible to not only conduct a detailed analysis of the variability in the gamma-ray range, but also compare the time profiles with the results of measurements with other RELEC instruments (the detector of optical and ultraviolet flares, radio-frequency and low-frequency analyzers of electromagnetic field parameters), as well as with the data of ground-based facility for thunderstorm activity. This paper presents the first catalog of Terrestrial gamma-ray flashes. The criterion for selecting flashes required in order to detect no less than 5 hard quanta in 1 ms by at least two independent detectors. The TGFs included in the catalog have a typical duration of ~400 μs, during which 10–40 gamma-ray quanta were detected. The time profiles, spectral parameters, and geographic position, as well as a result of a comparison with the output data of other Vernov instruments, are presented for each of candidates. The candidate for Terrestrial gamma-ray flashes detected in the near-polar region over Antarctica is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号