首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reiterative median cascaded canceler for robust adaptive array processing   总被引:1,自引:0,他引:1  
A new robust adaptive processor based on reiterative application of the median cascaded canceler (MCC) is presented and called the reiterative median cascaded canceler (RMCC). It is shown that the RMCC processor is a robust replacement for the sample matrix inversion (SMI) adaptive processor and for its equivalent implementations. The MCC, though a robust adaptive processor, has a convergence rate that is dependent on the rank of the input interference-plus-noise covariance matrix for a given number of adaptive degrees of freedom (DOF), N. In contrast, the RMCC, using identical training data as the MCC, exhibits the highly desirable combination of: 1) convergence-robustness to outliers/targets in adaptive weight training data, like the MCC, and 2) fast convergence performance that is independent of the input interference-plus-noise covariance matrix, unlike the MCC. For a number of representative examples, the RMCC is shown to converge using ~ 2.8N samples for any interference rank value as compared with ~ 2N samples for the SMI algorithm. However, the SMI algorithm requires considerably more samples to converge in the presence of outliers/targets, whereas the RMCC does not. Both simulated data as well as measured airborne radar data from the multichannel airborne radar measurements (MCARM) space-time adaptive processing (STAP) database are used to illustrate performance improvements over SMI methods.  相似文献   

2.
The performance of a least mean square (LMS) adaptive array in the presence of a pulsed interference signal is examined. It is shown that a pulsed interference signal has two effects. First, it causes the array to modulate the desired signal envelope (but not its phase). Second, it causes the array output signal-to-interferenceplus-noise ratio (SINR) to vary with time. The desired signal modulation is evaluated as a function of signal arrival angles, powers and interference pulse-repetition frequency (PRF) and pulsewidth. It is shown that the signal modulation is small except when the interference arrives close to the desired signal. To evaluate the effect of the time-varying SINR, it is assumed that the array is used in a differential phase-shift keyed (DPSK) communication system. It is shown that the SINR variation causes a noticeable but not disastrous increase in the bit error probability.  相似文献   

3.
The performance of an LMS adaptive array with a frequency hopped, spread spectrum desired signal and a CW interference signal is examined. It is shown that frequency hopping has several effects on an adaptive array. It causes the array to modulate both the amplitude and the phase of the received signal. Also, it causes the array output SINR (signal-to-interference-plus-noise ratio) to vary with time and thus increases the bit error probability for the received signal. Typical curves of the desired signal modulation and the time-varying SINR at the array output are presented. It is shown how the array performance depends on hopping frequency, frequency jump size, interference frequency, signal arrival angles, and signal powers.  相似文献   

4.
Robust adaptive matched filtering (AMF) whereby outlier data vectors are censored from the covariance matrix estimate is considered in a maximum likelihood estimation (MLE) setting. It is known that outlier data vectors whose steering vector is highly correlated with the desired steering vector, can significantly degrade the performance of AMF algorithms such as sample matrix inversion (SMI) or fast maximum likelihood (FML). Four new algorithms that censor outliers are presented which are derived via approximation to the MLE solution. Two algorithms each are related to using the SMI or the FML to estimate the unknown underlying covariance matrix. Results are presented using computer simulations which demonstrate the relative effectiveness of the four algorithms versus each other and also versus the SMI and FML algorithms in the presence of outliers and no outliers. It is shown that one of the censoring algorithms, called the reiterative censored fast maximum likelihood (CFML) technique is significantly superior to the other three censoring methods in stressful outlier scenarios.  相似文献   

5.
The behavior of a LMS (least mean square) adaptive array with modulated interference is described. An interference signal with sinusoidal, double-sideband, suppressed-carrier modulation is assumed. It is shown that such interference causes the array to modulate the desired signal envelope but not its phase. The amount of the desired signal modulation is determined as a function of signal arrival angles and powers and the modulation frequency of the interference. Such interference also causes the array output signal-to-interference-plus-noise ratio (SINR) to vary with time. However, it is shown that when the desired signal is a digital communication signal, the averaged bit error probability is essentially the same as for continuous wave (CW) interference.  相似文献   

6.
The sample matrix inversion (SMI) technique is used for Doppler and/or array processing. Previous analysis of the technique has been in terms of signal-to-interference plus noise ratio (SINR). For Gaussian statistics, this performance measure gives the same loss values as does a probability of detection analysis for linear-time invariant systems. It is often somewhat less valid for nonlinear or time variant systems. As SMI is a nonlinear technique, a probability of detection analysis has been performed. It is shown that the detection loss is larger than that computed by the SINR measure. It is also shown that though the loss predicted by the SINR measure only depends upon the number of measurements used to estimate the covariance matrix, the detection loss depends upon the false alarm probability and the number of adaptable elements in addition to the number of measurements.  相似文献   

7.
基于Kalman滤波的GPS/INS接收机自适应干扰抑制方法   总被引:1,自引:1,他引:0  
王纯  张林让  罗丰 《航空学报》2013,34(6):1414-1423
 考虑到惯导信息辅助GPS(GPS/INS)接收机对干扰抑制实时性的要求,提出一种基于Kalman滤波的GPS/INS接收机自适应干扰抑制方法。自适应广义旁瓣相消(GSC)多采用低复杂度最小均方(LMS)算法更新权矢量,收敛速率较低,严重时会导致接收机定位中断。首先利用Householder变换构建GSC下支路的阻塞矩阵,用于阻塞任意二维阵型阵列接收的期望信号;再用Kalman滤波自适应更新下支路权矢量,从而有效提高阵列输出信干噪比(SINR)。理论分析和仿真结果说明本文方法可有效抑制干扰对接收机的影响,且具有实时性高的特点。  相似文献   

8.
We consider a least mean square (LMS) adaptive array [1] receiving a phase modulated interference signal. The phase modulation is assumed to be periodic and to have finite bandwidth. Under these assumptions, we determine the time-varying array weights, the modulation on the array output desired signal, and the time-varying output interference-to-noise ratio (INR) and SINR (signal-to-interference-plus-noise ratio). We present numerical results describing the behavior of a 2-element adaptive array that receives an interference signal with sinusoidal phase modulation. We show how each signal parameter (arrival angle, power, modulation index, and modulation frequency) affects the performance of the array.  相似文献   

9.
In a nonstationary and/or nonhomogeneous interference environment, an adaptive system for target detection may suffer a severe performance degradation due to the lack of a sufficient amount of data from which the system can learn (estimate) the statistics of the environment. The detection performance of an adaptive system, which employs a frequency diversity (multiband) signaling waveform and a multiband sample matrix inversion algorithm (SMI), is analyzed. By comparison with the corresponding single-band system under the chosen system constraint, it is shown that the multiband system can significantly outperform the single band when the amount of data available from a single frequency band is severely limited by the environment  相似文献   

10.
An adaptive array architecture is described which has improved convergence speed over the conventional Applebaum array when the eigenvalue spread of the input signal covariance matrix is large. The architecture uses N+1 Applebaum adaptive arrays in a two-layer cascaded configuration. The gain constants in the first layer are set so that large interfering sources are quickly nulled, but small interfering sources are suppressed more slowly. Since the first layer removes the large interfering signals, the gain constant for the second layer can be set to a large value to quickly null the smaller interferers. The adaptation time is examined for several combinations of signal levels and array sizes. It is shown that, in many signal environments, the computational requirements for the cascaded array compare favorably with those of conventional sample matrix inversion (SMI) methods for large arrays  相似文献   

11.
Due to the range ambiguity of high pulse-repetition frequency (HPRF) radars, echoes from far-range fold over near-range returns. This effect may cause low Doppler targets to compete with near-range strong clutter. Another consequence of the range ambiguity is that the sample support for estimating the array covariance matrix is reduced, leading to degraded performance. It is shown that space-time adaptive processing (STAP) techniques are required to reject the clutter in HPRF radar. Four STAP methods are studied in the context of the HPRF radar problem: low rank approximation sample matrix inversion (SMI), diagonally loaded SMI, eigencanceler, and element-space post-Doppler. These three methods are evaluated in typical HPRF radar scenarios and for various training conditions, including when the target is present in the training data  相似文献   

12.
Adaptive filtering for signal detection in colored interference of unknown statistics is addressed. The detection performance of a modified version of the well-known sample matrix inversion (SMI) algorithm, called the modified SMI (MSMI), is compared with that of the generalized likelihood ratio (GLR) algorithm in colored Gaussian interference. The performance sensitivity of the MSMI and GLR in colored Weibull and log-normal interference is studied via simulation. It is found that there is almost no need to use the more complicated GLR algorithm in Gaussian interference, while in Weibull or log-normal interference the GLR should be preferable to the MSMI  相似文献   

13.
The effect of differential time delay in the feedback loops of an LMS adaptive array is examined. Differential time delay is shown to have two effects on array performance. First, it causes the weights to oscillate during weight transients. Second, it degrades the output signal-to-interference-plus-noise ratio (SINR) from the array. Weight oscillation occurs when the phase shifts in the LMS loop are not matched at the signal carrier frequency. SINR degradation depends on signal bandwidth: the wider the bandwidth, the larger the degradation.  相似文献   

14.
唐波  汤俊  彭应宁 《航空学报》2010,31(3):587-592
针对圆台共形阵列,建立了空时二维自适应处理(STAP)的杂波模型,给出了圆台阵列杂波抑制最优权值的计算方法。在此基础之上,为了实现可应用到实际环境中的自适应处理方法,进一步讨论了将局部联合域(JDL)降维算法推广至圆台阵列中的问题。得出了圆台阵列JDL算法降维变换矩阵的表达形式,研究了参考波束的数目选取、波束指向等因素对降维损失的影响。理论分析以及仿真结果表明,通过合理选择通道数、波束方位向指向间隔等参数,该算法能够减少自适应波束形成的计算量,而且可以用较少的训练样本获得较好的处理性能。  相似文献   

15.
Distribution-free methods and maximum-likelihood estimation technique have been previously suggested for constant-false-alarm-rate (CFAR) processors. The first technique assumes no a priori environmental knowledge and the second assumes almost complete environmental knowledge. Several intermediate environmental assumptions are considered. The performance of single-pulse transmission signal processors that produce CFAR for the different environments is analyzed. Probability of target detection is evaluated for Rayleigh interference and Swerling I target. It is shown that adaptive threshold techniques implemented by logarithmic amplifiers, instead of linear amplifiers, can attain better false-alarm-rate control with only small loss in target detectability.  相似文献   

16.
The performance of the sampled matrix inversion (SMI) adaptive algorithm in colored noise is investigated using the Gram-Schmidt (GS) canceler as an analysis tool. Lower and upper bounds of average convergence are derived, indicating that average convergence slows as the input time samples become correlated. When the input samples are uncorrelated, the fastest SMI algorithm convergence occurs. When the input samples are correlated then the convergence bounds depend on the number of channels N, the number of samples per channels K , and the eigenvalues associated with K×K correlation matrix of the samples in a given channel. This matrix is assumed identical for all channels  相似文献   

17.
The use of adaptive linear techniques to solve signal processing problems is needed particularly when the interference environment external to the signal processor (such as for a radar or communication system) is not known a priori. Due to this lack of knowledge of an external environment, adaptive techniques require a certain amount of data to cancel the external interference. The number of statistically independent samples per input sensor required so that the performance of the adaptive processor is close (nominally within 3 dB) to the optimum is called the convergence measure of effectiveness (MOE) of the processor. The minimization of the convergence MOE is important since in many environments the external interference changes rapidly with time. Although there are heuristic techniques in the literature that provide fast convergence for particular problems, there is currently not a general solution for arbitrary interference that is derived via classical theory. A maximum likelihood (ML) solution (under the assumption that the input interference is Gaussian) is derived here for a structured covariance matrix that has the form of the identity matrix plus an unknown positive semi-definite Hermitian (PSDH) matrix. This covariance matrix form is often valid in realistic interference scenarios for radar and communication systems. Using this ML estimate, simulation results are given that show that the convergence is much faster than the often-used sample matrix inversion method. In addition, the ML solution for a structured covariance matrix that has the aforementioned form where the scale factor on the identity matrix is arbitrarily lower-bounded, is derived. Finally, an efficient implementation is presented.  相似文献   

18.
自适应阵列(或称自适应波束形成)目前已广泛应用到雷达、声纳和通信领域中用来抑制各种干扰(有意的干扰,杂波干扰和多用户干扰等)。在雷达应用中,为了减轻脉冲欺骗式干扰或旁瓣目标并利用单脉冲雷达来准确测量目标波达方向.要求自适应方向图具有低副瓣和稳定的主瓣形状。在实际应用中,各种失配误差将降低自适应阵列的性能.这些误差包括由于目标的波达方向不精确引起的信号指向误差,由通道失配和位置扰动引起的阵列校准误差和由小样本教引起的协方差矩阵估计误差。在此情况下,自适应波束形成的性能大大下降(干扰抑制性能变差。主瓣失真和高的副瓣)。已提出了一种基于二次约束的集成峰值副瓣控制(integrated peak sidelobe control,简称IPSC)方法。该方法可以精确地控制峰值副瓣电平并产生具有稳定的主瓣形状的自适应方向图。研究IPSC中目标信号的影响和信号消除方案以进一步提高IPSC的性能。并将IPSC方法和最新提出的基于二阶锥规划(second-order cone programming,简称SOCP)的分布式峰值副瓣控制(distfibuted peak sidelobe control,简称为DPSC)新方法在性能上进行了比较。仿真结果表明。在干扰抑制性能和方向图控制质量方面IPSC比DPSC性能优越。此外IPSC比DPSC计算高效。  相似文献   

19.
The effect of mutual coupling on the performance of space-time adaptive processing (STAP) antenna arrays is investigated. A signal model that includes the effects of mutual coupling is derived and used to compute the optimum solution for the fully adaptive and a variety of partially adaptive algorithms. The simulations indicate that if the mutual coupling is not properly accounted for there is significant degradation of the signal-to-interference-plus-noise ratio (SINR). In addition, the clutter notch is widened resulting in a larger minimum detectable velocity (MDV) of the target. When the mutual coupling is properly accounted for, the performance can be restored to the ideal level. However, STAP algorithms, in general, are very sensitive to errors in the mutual coupling matrix, requiring a very complete knowledge of this matrix for good performance. Of all the algorithms considered here, beam space algorithms appear to be the most robust with respect to uncertainties in the mutual coupling matrix  相似文献   

20.
Space-time autoregressive filtering for matched subspace STAP   总被引:3,自引:0,他引:3  
Practical space-time adaptive processing (STAP) implementations rely on reduced-dimension processing, using techniques such as principle components or partially adaptive filters. The dimension reduction not only decreases the computational load, it also reduces the sample support required for estimating the interference statistics. This results because the clutter covariance is implicitly assumed to possess a certain (nonparametric) structure. We demonstrate how imposing a parametric structure on the clutter and jamming can lead to a further reduction in both computation and secondary sample support. Our approach, referred to as space-time autoregressive (STAR) filtering, is applied in two steps: first, a structured subspace orthogonal to that in which the clutter and interference reside is found, and second, a detector matched to this subspace is used to determine whether or not a target is present. Using a realistic simulated data set for circular array STAP, we demonstrate that this approach achieves significantly lower signal-to-interference plus noise ratio (SINR) loss with a computational load that is less than that required by other popular approaches. The STAR algorithm also yields excellent performance with very small secondary sample support, a feature that is particularly attractive for applications involving nonstationary clutter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号