首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
对于采用下单翼布局翼吊发动机形式的大型客机而言,为了保证发动机与地面的安全距离,挂架高度较短,造成前缘缝翼被打断,大迎角下发动机短舱尾迹对其后方机翼上翼面的流动产生不利影响。采用数值模拟方法系统研究了在发动机挂架后方机翼上表面采用主动流动控制技术来提高着陆构型的气动性能。采用机翼+短舱构型研究了吹气参数对吹气效果的影响。结果表明:大迎角下,吹气可以抑制短舱后方机翼上表面的分离流动,使最大升力系数明显提高;吹气缝宽度、吹气质量流率由于会影响吹气总压的变化,对吹气效果的影响显著,对升力系数的影响量在0.05以上;吹气缝与上翼面夹角会影响能量注入的区域,对吹气效果有较大影响;吹气缝位置会影响吹气控制的范围,对吹气效果也有一定影响。分别对无短舱涡流片和有短舱涡流片的全机构型进行了校核研究。采用吹气措施之后,无短舱涡流片构型线性段升力系数增大约0.15,最大升力系数增大0.186,失速迎角增大1°;有短舱涡流片构型线性段升力系数增大约0.13,最大升力系数增大0.16。   相似文献   

2.
飞翼布局飞行器等离子体激励滚转操控试验   总被引:2,自引:0,他引:2  
飞翼布局飞行器采用多个气动舵面共同作用来控制飞行,常规气动舵面的结构复杂,在大迎角时由于流动分离,舵面操纵效率显著降低。等离子体激励器具有结构简单、重量轻和响应快等优势,常被用在流动控制上。本文利用激励器抑制单侧翼面流动分离产生不对称的气动力,对飞翼布局飞行器滚转通道的控制进行了试验研究,得出了激励器在飞行器上的最优布置位置和最佳控制参数,并和常规副翼舵面滚转操控效果进行了对比。结果表明:布置于内翼、中翼前缘的等离子体激励器能够获得最佳的滚转控制效果;激励器调制频率对飞行器滚转控制效果的影响较大,而激励电压对滚转控制效果的影响较小;与常规副翼相比,等离子体激励器在大迎角时对滚转通道的操控效果优于副翼。  相似文献   

3.
风洞实验结果表明鸭翼展向吹气能提高飞机大迎角升力,延缓机翼涡破裂,增大飞机失速迎角.但由于鸭翼展向吹气需从发动机引气,这势必对发动机推力和飞机的各项性能产生影响.采用动量定理和耗油率公式对从发动机引气造成的气流质量流量损失、发动机推力损失和对飞机总升力(引气造成的升力损失和鸭翼吹气获得的升力增量之和)的影响等方面进行了评估,并比较了机翼展向吹气与鸭翼展向吹气两种方式.结果表明,鸭翼展向吹气引气量少、推力损失小,对飞机大迎角机动性能有利,是一种可取的间接涡控制技术.   相似文献   

4.
合成射流控制NACA0015翼型大攻角流动分离   总被引:6,自引:0,他引:6  
为了研究合成射流激励器处于NACA0015翼型回流区时对其分离流动的控制,采用商用计算流体力学软件Fluent 6.1求解Reynolds平均Navier-Stokes方程,通过对翼型气动力特性、脱落漩涡结构以及射流孔口附近流动结构的分析,揭示了合成射流处于分离区时对边界层控制的机理.结果表明:当合成射流孔口处于回流区时仍可有效推迟翼面边界层分离点,缩小回流区范围,从而有效提高翼型的升力.当射流方向垂直于壁面,无量纲频率以及吹气速度比都等于1时,翼型平均升力系数提高40%左右.   相似文献   

5.
通过对带有90°倾角圆柱形交错孔排的涡轮叶片模型进行数值模拟,得到了不同主流雷诺数、旋转数和吹风比情况下前缘面与后缘面侧的气膜冷却流动与换热特性及各气膜孔流量系数的分配规律.结果表明,冷气受到离心力与哥氏力的共同作用向高半径处发生偏转,导致壁面冷却效率降低;雷诺数的增大会削弱气膜冷却效果,高吹风比则不利于气膜孔下游区域的冷却.各气膜孔的流量系数随吹风比的增大而增大,随旋转数的提高而减小.在后缘面侧,相同工况下各气膜孔的流量系数明显高于前缘面侧对应气膜孔的值.   相似文献   

6.
类X-51A飞行器非定常湍流精细模拟   总被引:1,自引:1,他引:0  
针对类X-51A飞行器在超声速大迎角状态下存在的大范围非定常分离流动,开展了精细化湍流数值模拟研究。计算基于高阶格式下的延迟分离涡模拟方法(DDES),来流马赫数为2.5,迎角为10°。分析了该复杂流场中存在的分离流动现象、分离流动诱导的气动特性变化规律以及压力脉动特点;其中重点研究了壁面压力脉动强度分布情况和监测点压力脉动频谱特性。分析结果表明:飞行器大迎角飞行时从侧缘诱导出明显的分离涡,并对尾部舵面产生干扰;受干扰尾舵表现出明显的非线性及非定常气动特性;分离涡的存在导致飞行器尾舵前缘等位置的壁面压力脉动显著增强,200~300 Hz的低频高幅值脉动可能会导致结构破坏。   相似文献   

7.
三维多段机翼复杂流场的计算和分析   总被引:1,自引:0,他引:1  
采用中心差分的有限体积方法和分区技术求解了N-S(Navier-Stokes)方程,在分区求解技术中采用了满足通量守恒的内边界耦合条件.分析讨论了三维襟翼的绕流流场,对"剪刀差"处的三维分离进行了探讨,初步揭示了绕流的主要特征及对附近物面压强的影响.同时,分析了三维襟翼前缘的分离流动.   相似文献   

8.
轴向通流旋转盘腔内流动不稳定性研究   总被引:5,自引:1,他引:4  
为了研究旋转腔内流动不稳定性问题,采用旋转坐标系稳态方程,用数值模拟的方法分析了轴向通流旋转盘腔内的流动,得到了旋转系下哥氏力和离心浮升力分别对流动不稳定的作用,以及这两个力的非线性综合作用对流动不稳定的影响.结果表明:哥氏力是恢复力,不影响流动稳定性;离心浮升力是造成流动不稳定的主要因素,盘腔内的流动是离心力场下的Rayleigh-Benard对流和强迫对流的混合流,随着浮升力的增强流动由稳态发展为非稳态;哥氏力与离心浮升力的综合作用加剧了流动不稳定性,盘腔内r-θ面出现了明显的旋向相反的对涡.  相似文献   

9.
积冰几何特性对翼型性能影响的神经网络预测   总被引:2,自引:0,他引:2  
积冰几何形状对翼型气动系数的影响是复杂的.采用BP(Back Propagation)神经网络的LM(Levenberg-Marguardt)学习算法,建立明冰的典型几何特性(冰角前缘半径、冰角高度和冰角位置)对翼型气动系数影响的神经网络,得到该3种几何参数对气动系数影响的规律;建立了典型冰形参数对最大升力系数影响的神经网络,该网络能很好的预测冰形参数对应的最大升力系数值;此外,建立了冰型位置对舵面铰链力矩系数影响的神经网络.仿真结果表明,BP神经网络仿真结果与实验值具有高度一致性,并能预测非实验值条件下的气动系数;翼型表面积冰位置变化对气动系数影响最大;铰链力矩系数在失速迎角达到之前就发生突变,可以更安全地用来预测失速的发生.   相似文献   

10.
微吹减阻技术影响因素的数值模拟   总被引:1,自引:0,他引:1  
以NASA格伦中心的PN3和PN23型微孔壁板为原形建立"1排微孔"、"4排微孔"、"8排微孔"和"16排微孔"4种计算模型,针对不同的几何、物理参数进行了微吹技术MBT(Micro-Blowing Technique)降低平板摩擦阻力的数值模拟参数研究.结果显示:微量吹气使主流边界层近壁面流动减速,从而改变了壁面局部摩擦力的分布;不同几何、物理参数对MBT技术减阻能力的影响满足一定的规律.参数研究的结果可为该技术的减阻应用提供一定的指导.  相似文献   

11.
锯齿形格尼襟翼气动性能的实验研究   总被引:7,自引:0,他引:7  
用低速风洞测力试验和襟翼处绕流的PIV测量试验研究锯齿形格尼襟翼在不同偏角下的增升效益.结果表明:锯齿形格尼襟翼能明显提高翼型的升力系数和大升力系数下的翼型升阻比,对于给定的襟翼弦长,存在一个最佳的襟翼偏角,在此偏角下,翼型升阻比不仅在大升力系数下有明显提高,而且在中小升力系数时升阻比也有一定的提高.PIV测量表明从锯齿形格尼襟翼的齿边向上卷起的流向涡使上翼面后部气流向翼型表面吸附,推迟了上翼面气流的分离.  相似文献   

12.
为了探究螺旋桨滑流对低雷诺数菱形翼布局太阳能无人机气动特性的影响,采用动量源方法(MSM)与k-kL-ω转捩模型求解雷诺平均Navier-Stokes(RANS)方程对不同转速状态下菱形翼布局太阳能无人机的气动特性进行了准确模拟。并通过对比机翼表面流场结构与压力分布,分析了不同迎角下螺旋桨转速变化对菱形翼布局前后翼气动干扰的机理。研究表明:随着螺旋桨转速增大,小迎角下增升减阻效果明显,最大升阻比在3 000 r/min时提升了18.4%。在小迎角时,前翼气流受到抽吸作用,升力增加,后翼受螺旋桨旋转气流影响,前缘出现大范围吸力区,压差阻力减小。在大迎角时,前翼影响不变,后翼前缘下表面吸力区范围及强度均减弱,前缘负升力区消失,增升效果改善,压差阻力增加。由于在不同迎角时,升力增量的主要贡献部件不同,导致无人机纵向静稳定裕度随着转速的提升而增大。菱形翼布局太阳能无人机通过合理设置螺旋桨位置与转速,可有效利用螺旋桨滑流提升气动性能。   相似文献   

13.
前掠翼气动布局中鸭翼高度影响的实验   总被引:2,自引:0,他引:2  
基于前掠翼-鸭式前翼布局的风洞测力实验,分析了距离主机翼较远的鸭翼相对于主机翼的高度对布局纵向气动性能的影响.基于主机翼根弦长的雷诺数约为1.44×105.实验结果表明,较大的主机翼前掠角与较低的鸭翼配合,产生的升力系数增量比较显著.低于主机翼的鸭翼将加强前掠翼布局的缓失速特性.鸭翼增大升力的同时也增大了阻力;大攻角时,鸭翼带来的阻力增量较大.高于主机翼的鸭翼对最大升阻比的改善较多,但也不宜过高.主机翼前掠角较小时,鸭翼改善和提高升阻比的效果比较明显.  相似文献   

14.
带前缘小翼的扇翼翼型气动特性数值模拟分析   总被引:1,自引:1,他引:0  
扇翼升力和推力的产生主要依靠翼型前缘弧形槽上方低压涡的形成,使得升力和推力具有较强的耦合关系,如何对其解耦控制是扇翼进一步工程应用的关键。对于扇翼翼型各项几何参数确定的情况下,前缘开口角的大小对扇翼气动性能的影响最大。因此考虑在基准扇翼翼型的前缘安装前缘小翼的方法来改变扇翼前缘开口角的大小,通过数值模拟的方法,对比分析了单片、双片和三片前缘小翼在不同前缘小翼偏转角、来流速度、迎角下对扇翼升力和推力的影响规律。结果表明:通过对前缘小翼偏转角的角度控制不仅仅可以改善扇翼的升力和推力,还可对低压涡的强度和位置进行控制,满足对扇翼气动力的主动控制要求,因而可实现对扇翼飞行器姿态进行操控的目的。   相似文献   

15.
为了研究合成射流控制鼓包背风面分离流动的效果,采用商用流体力学软件FLUENT® 6.3求解Reynolds平均Navier-Stokes方程,通过分析鼓包壁面摩擦力系数分布、旋涡脱落结构以及射流孔口附近流动结构,揭示了合成射流对分离点不固定的流动分离的控制机理.结果表明:在分离点前施加合成射流可有效缩小回流区范围,涡脱落被施加的激励"锁定",涡脱落的频率等于合成射流的频率.此外,在本研究所考虑的情况下,动量系数越大,控制效果越好.从时均效果看,当施加最大吹气动量系数为0.369 1%的合成射流时,分离泡长度减小了11%.  相似文献   

16.
多操纵面无尾布局飞机横航向控制   总被引:4,自引:0,他引:4  
通过风洞测力实验,研究了不同操纵面单侧作动和同步差动对无尾布局飞机横航向气动特性的影响.结果表明:在线性段,升降副翼和襟副翼正向单侧作动以及同步差动都具有一定的增升效果,全动翼尖单侧作动使得全机升力系数减小.操纵面作动对偏航力矩控制的规律性不明显,通过比较发现全动翼尖单侧作动对偏航力矩的控制效果要高于升降副翼和襟副翼作动.操纵面作动对滚转力矩具有较好的控制效果.升降副翼和襟副翼正向作动均会带来负的滚转力矩,舵偏角度越大负向滚转力矩越大.升降副翼作动对滚转力矩的控制效率高于襟副翼,全动翼尖作动对滚转力矩的控制效率较低.相比单侧作动,两侧同步差动可以提高滚转力矩控制效率.  相似文献   

17.
飞行器动态下俯过程中的负阻力现象   总被引:1,自引:1,他引:0  
利用水洞中动态测力/流动显示一体化实验系统,研究飞行器简易模型等速俯仰过程动态气动特性.测力天平为三分量内式尾支形式;利用氢气泡方法观测机翼上表面流动,测力和流动显示结果同时记录.当下俯无量纲角速度k≥0.11时,观测到正攻角时的负阻力现象.分析测力和流动显示结果,表明负阻力是下俯过程中上翼面流动由分离向附着恢复过程中的迟滞效应引起的,负阻力的大小与下俯无量纲角速度和下俯起始攻角有直接关系.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号