首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 963 毫秒
1.
By using the observation data and products of precise obit and clock offset from Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS) and GNSS Research Centre, Curtin University in this paper, the positioning performance of BDS/QZSS satellite navigation system has been analyzed and evaluated in aspects of the quantity of visible satellites, DOP value, multipath effect, signal-to-noise ratio, static PPP and kinematic PPP. The analysis results show that compared to BDS single system when the cutoff angle are 30°and 40°, the DOP value of BDS/QZSS combined system has decreased above 20%, and the quantity of visible satellites increased about 16–30% respectively, because of the improved spatial geometric configuration. The magnitude of satellite multipath effect of BDS system shows the trend of MEO?>?IGSO?>?GEO, which is consistent with that of QZSS satellite system, as the constellation structure of the two systems is similar. The variation tendencies of signal-to-noise ratio with respect to elevation angle of the two systems are almost the same at all frequencies, showing that at the same elevation angle the signal-to-noise ratio of MEO satellites is higher than that of IGSO satellites, as the higher obit is the lower transmitting power is obtained. For having a specially designed obit, the variation of signal-to-noise ratio of BDS system is more stable. However, the magnitude of signal-to-noise ratio of QZSS system appears the trend of frequency 3?>?frequency 2?>?frequency 1. The static PPP performance of the BDS/QZSS combination system has been improved more significantly than the BDS single system in E, N and U directions. When the cutoff angle are at 7°, 15° and 30°, the PPP accuracy is increased about 25–34% in U direction, 10–13% and 23–34% in E and N directions respectively. When the elevation angle is large (40°), compared to BDS single system at lower elevation angles (7° and 15°) the PPP accuracy of the BDS/QZSS combination system is improved above 30% in U direction. In kinematic PPP performance, compared to BDS single system, the accuracy, availability and reliability of the BDS/QZSS combination system has been improved too, especially at large elevation angles (30° and 40°), the kinematic PPP accuracy in E and U directions has been improved about 10–50%, and above 50% in U direction. It can be concluded that the combination with QZSS system can improve the positioning accuracy, reliability and stability of BDS system. In the future, with the improvement of the satellite construction of Japan’s QZSS system and the global networking of China’s BDS satellites, the QZSS satellites will contribute greatly to improve the positioning accuracy, reliability, availability and stability of GNSS systems in areas such as cities, mountains, densely-packed buildings and severely covered areas in Asian-Pacific region.  相似文献   

2.
3.
Herein, we report on the ionospheric responses to a total solar eclipse that occurred on 21 August 2017 over the US region. Ground-based GPS total electron content (TEC) data along with ground-based measurements (Millstone Hill Observatory (MHO) and digital ionosondes) and space-based measurements (COSMIC radio occultation (RO) technique) allowed us to identify eclipse-associated ionospheric responses. TEC data at ~20°, ~30°, and ~40°N latitudes from the west to east longitudes show not only considerable depression but also wave-like characteristics in TEC both in the path of totality and away from it, exclusively on the day of eclipse. Interestingly, the observed depressions are associated with lesser (higher) magnitudes at stations over which the solar obscuration percentage was meager (significant), a clear indication of bow-wave-like features. The MHO observes a 30% reduction in F2-layer electron densities between 180 and 220 km on eclipse day. Ionosonde-scaled parameters over Boulder (40.4°N, 100°E) and Austin (30.4°N, 94.4°E) show a significant decrease in critical frequencies while an altitude elevation is seen in the virtual heights of the F-layer only during the eclipse day and that decreases are associated with wave-like signatures, which could be attributed to eclipse-generated waves. The estimated vertical electron density profile from the COSMIC RO-based technique shows a maximum depletion of 40%. Relatively intense and moderate depths of TEC depression, considerable reductions in the F2-layer electron densities measured by the MHO and COSMIC RO-measured densities at the F2-layer peak, and elevations in virtual heights and reduction in the critical frequencies measured by ionosondes during the eclipse day could be due to the eclipse-induced dynamical effects such as gravity waves (GWs) and their associated electro-dynamical effects (modification of ionospheric electric fields due to GWs).  相似文献   

4.
IPM has detected nightside 135.6 nm emission enhancements over a wide latitude range, from the sub-auroral latitudes to the equatorial regions during geomagnetic storms. Our work, presented in this paper, uses the data of IPM to understand these 135.6 nm emission enhancements during of geomagnetic storms and studies the variations of total electron content (TEC) and the F2 layer peak electron density (NmF2) in the region of enhanced emissions. Middle and low latitude emission enhancements are presented during several medium storms in 2018. The variations of both the integrated electron content (IEC) derived from the nighttime OI 135.6 nm emission by IPM and TEC from the International GNSS Service (IGS) relative to the daily mean of magnetically quiet days of per each latitude bin (30°≦geographic latitude < 40°, 15°≦geographic latitude < 30°, 0°≦geographic latitude < 15°, ?15°≦geographic latitude < 0°, ?30°≦geographic latitude < -15°, ?40°≦geographic latitude < -30°) are investigated and show that on magnetically storm day, IEC by IPM always increases, while TEC from IGC may increase or decrease. Even if both increase, the increase of IEC is greater than that of TEC. From the comparison of IEC and TEC during magnetic storms, it can be seen that the enhancement of the nighttime 135.6 nm emissions is not entirely due to the ionospheric change. The time of IEC enhancements at each latitude bin is in good agreement, which mainly corresponds to the main phase time of the geomagnetic storm event and lasts until the recovery phase. The available ground-based ionosonde stations provide the values of NmF2 which match the 135.6 nm emissions measured by IPM in space and time. The variations of NmF2 squared can characterize the variations of the OI 135.6 nm emissions caused by O+ ions and electrons radiative recombination. The study results show that the OI 135.6 nm emission enhancements caused by O+ ions and electrons radiative recombination (where NmF2 squared increases) are obviously a contribution to the measured 135.6 nm emission enhancements by IPM. The contribution accounts for at least one of all contributions to the measured 135.6 nm emission enhancements by IPM. However, where the NmF2 squared provided by ionosonde decrease or change little (where the OI 135.6 nm emissions cause by O+ ions and electrons radiative recombination also decrease or change little), the emission enhancements measured by IPM at storm-time appear to come from the contributions of other mechanisms, such as energetic neutral atoms precipitation, or the mutual neutralization emission (O+ + O-→2O + h? (135.6 nm)) which also occupies a certain proportion in 135.6 nm airglow emission at night.  相似文献   

5.
We report results from an experiment on high-pressure compaction of lunar soil simulant (LSS) mixed with 2–5?wt% polymer binder. The LSS grains can be strongly held together, forming an inorganic-organic monolith (IOM) with the flexural strength around 30–40?MPa. The compaction pressure, the number of loadings, the binder content, and the compaction duration are important factors. The LSS-based IOM remains strong from ?200?°C to 130?°C, and is quite gas permeable.  相似文献   

6.
We have solved the Maxwellian equations of electromagnetic waves which oscillate within the cavity formed in the lower ionosphere of Mars between 0 and 70?km. The electrical conductivity and Schumann Resonance (SR) frequencies are calculated in the lower ionosphere of Mars, in the presence of a major dust storm that occurred in Martian Year (MY) 25 at low latitude region (25°–35°S). It is found that the atmospheric conductivity reduced by one to two orders of magnitude in the presence of a dust storm. It represents a small dust layer at about 25–30?km altitudes where lightning can occur. We also found that the SR frequencies peak at?~18?km with values 19.9, 34.5 and 48.8?Hz for the modes l?=?1, 2 and 3, respectively, in the non-homogeneous medium. Our results indicate that practical or measurable values of SR are dependent on the altitudes.  相似文献   

7.
Ionospheric perturbations in possible association with a major earthquake (EQ) (M?=?8.5) which occurred in India-Oceania region are investigated by monitoring subionospheric propagation of VLF signals transmitted from the NWC transmitter (F?=?19.8?kHz), Australia to a receiving station at Varanasi (geographic lat. 25.3°N, long 82.99°E), India. The EQ occurred on 11 April 2012 at 08:38:35?h UT (magnitude?≈?8.5, depth?=?10?km, and lat.?=?2.3°N, long.?=?93.0°E). A significant increase of few days before the EQ has been observed by using the VLF nighttime amplitude fluctuation method (fixed frequency transmitter signal). The analysis of total electron contents (TEC) derived from the global positioning system (GPS) at three different stations namely, Hyderabad (latitude 17.38°N, longitude 78.48°E), Singapore (latitude 1.37°N, longitude 103.84°E) and Port Blair (latitude 11.62°N, longitude 92.72°E) due to this EQ has also been presented. Significant perturbation in TEC data (enhancements and depletion) is noted before and after the main shock of the EQ. The possible mechanisms behind these perturbations due to EQ have also been discussed.  相似文献   

8.
The realistic model of Quegan et al. has been used to investigate the convection paths of ionospheric plasma at 300 km altitude, for different polar cap radii and in both hemispheres. Taking the Northern magnetic dip pole to be at a co-latitude of 11° and the Southern magnetic dip pole at a co-latitude of 23°, these paths are presented in a Sun-Earth frame, with the position of the Earth's axis fixed as it is on 21 March, as polar plots centred on the magnetic pole. There are marked hemispheric differences between 13 and 23 L.T., particularly near the stagnation region at 18 to 21 L.T., but only minor differences between 00 and 12 L.T., when the radius of the polar cap exceeds 12°. For a smaller polar cap, the differences between the hemispheres are small at all local times. The time taken to perform a complete circuit is most dependent on the polar cap radius, and most variable - between 15 and 36 h - for convection paths starting near 60° latitude. The time that plasma convecting from noon to near midnight across the Northern polar cap spends within the 10° co-latitude circle increases from 6 h, for a polar cap radius of 10°, to 11.5 h at 17°. These results are compared and contrasted with other model calculation results and with some ground-based and satellite observations of plasma densities at high latitudes.  相似文献   

9.
The ion density measured by the Ionospheric Plasma and Electrodynamics Instrument (IPEI) on board the ROCSAT -1 over the 75°E and 95°E meridian at 600km altitude has been utilized to examine the latitudinal and longitudinal distribution within the Indian sector, in particular, the north-south and east-west asymmetries of the equatorial ionization anomaly (EIA). A longitudinal gradient in ion density at 600?km higher towards 95°E develops during the noontime and afternoon hours when the EIA is at its peak. The density gradient persists till evening hours when pre-reversal enhancements occur. The vertical E?×?B plasma drift velocity measured simultaneously by ROCSAT -1 for the same space-time configuration has also been studied. In addition to diurnal, seasonal and solar activity variations in E?×?B drift velocity, the longitudinal gradient is also observed. The EIA at the altitude of 600?km peaks at different latitudes and are mostly asymmetric about the magnetic equator. From midnight till 0800 LT, the ion density across the equator is nearly uniform in the equinoxes. But in the solstices, the density exhibits a north-south gradient. In the June solstice, density is higher in the northern hemisphere and decreases gradually towards south. The gradient in density reverses in December solstice. Normally, the EIA peaks within 1200 LT and 1600 LT while around 2000 LT, pre-reversal enhancement of ionization occurs affecting the EIA evening structure. The strength of the EIA also exhibits seasonal, year-to-year and hemispheric variations. The longitudinal asymmetry of drift velocity along 75°E and 95°E longitude sectors is the contributing factor behind the observed longitudinal asymmetry in ion density. Significant positive correlation between the strength of the EIA and E?×?B drift is observed in both longitudes.  相似文献   

10.
Mars Global Reference Atmospheric Model (Mars-GRAM 2001) is an engineering-level Mars atmosphere model widely used for many Mars mission applications. From 0 to 80 km, it is based on NASA Ames Mars General Circulation Model (MGCM), while above 80 km it is based on University of Michigan Mars Thermospheric General Circulation Model. Mars-GRAM 2001 and MGCM use surface topography from Mars Global Surveyor Mars Orbiter Laser Altimeter (MOLA). Validation studies are described comparing Mars-GRAM with a global summary data set of Mars Global Surveyor Thermal Emission Spectrometer (TES) data. TES averages and standard deviations were assembled from binned TES data which covered surface to ∼40 km, over more than a full Mars year (February 1999–June 2001, just before start of a Mars global dust storm). TES data were binned in 10° × 10° latitude–longitude bins (36 longitude bins, centered at 5°–355°, by 18 latitude bins, centered at −85° to +85°), and 12 seasonal bins (based on 30° increments of Ls angle). Bin averages and standard deviations were assembled at 23 data levels (temperature at 21 pressure levels, plus surface temperature and surface pressure). Two time-of-day bins were used: local time near 2 or 14 h. Two dust optical depth bins were used: infrared optical depth, either less than or greater than 0.25 (which corresponds to visible optical depth less than or greater than about 0.5). For interests in aerocapture and precision entry and landing, comparisons focused on atmospheric density. TES densities versus height were computed from TES temperature versus pressure, using assumptions of perfect gas law and hydrostatics. Mars-GRAM validation studies used density ratio (TES/Mars-GRAM) evaluated at data bin center points in space and time. Observed average TES/Mars-GRAM density ratios were generally 1 ± 0.05, except at high altitudes (15–30 km, depending on season) and high latitudes (>45°N), or at most altitudes in the southern hemisphere at Ls  90° and 180°. Compared to TES averages for a given latitude and season, TES data had average density standard deviation about the mean of ∼2.5% for all data, or ∼1–4%, depending on time of day and dust optical depth. Average standard deviation of TES/Mars-GRAM density ratio was 8.9% for local time 2 h and 7.1% for local time 14 h. Thus standard deviation of observed TES/Mars-GRAM density ratio, evaluated at matching positions and times, is about three times the standard deviation of TES data about the TES mean value at a given position and season.  相似文献   

11.
A thorough analysis of balloon flights made from Hyderabad, India (Latitude 17°28′N, Longitude 78°35′E), and other equatorial sites has been made. It has been shown that limited success is expected for flights made from equatorial latitudes with balloons made out of natural colour polyethylene film, since the best known balloon film in the world today viz. Winzen Stratofilm is tested for low temperature brittleness only at ?80°C., whereas the tropopause temperatures over equatorial latitudes vary between ?80°C and ?90°C. The success becomes even more critical when flights are made with heavy payloads and larger balloons particularly at night when in the absence of solar radiation the balloon film becomes more susceptible to low temperature brittle failure. It is recommended that in case of capped balloons longer caps should be used to fully cover the inflated protion of the balloon at the higher level equatorial tropopause. It is also advised that the conditions such as wind shears in the tropopause should be critically studied before launching and a day with the tropopause temperature nearer to ?80°C should be chosen. Special care also should be taken while handling the balloon on ground and during launching phase. Properties of Winzen Stratofilm have been critically studied and fresh mandates have been recommended on the basis of limiting values of film stresses which caused balloon failures in the equatorial tropopause. It is also emphasized that the data on such flights is still meagre especially for flights with heavy payloads and larger balloons. It has been also shown that it is safest to use balloons made out of grey coloured film which retains its flexibility with the absorption of solar radiation, the success obtained with such balloons so far being 100%. The drawback, however, is that these balloons cannot be used for night flights. Stratospheric wind regimes over Hyderabad are also discussed with a view to determine the period over which long duration flights can be made. The data available, however, is meagre and it is recommended that more frequent special wind ascents be made to collect adequate statistical data from which reliable conclusions could be drawn through critical analysis.  相似文献   

12.
This paper reports the diurnal, seasonal, and long term variability of the E layer critical frequency (foE) and peak height (hmE) derived from Digisonde measurements from 2009 to 2016 at the low-middle latitude European station of Nicosia, Cyprus (geographical coordinates: 35°N, 33°E, geomagnetic lat. 29.38°N, I = 51.7°). Manually scaled monthly median values of foE and hmE are compared with IRI-2012 predictions with a view to assess the predictability of IRI. Results show that in general, IRI slightly overestimates foE values both at low and high solar activity. At low solar activity, overestimations are mostly limited to 0.25?MHz (equivalent electron density, 0.775?×?103?el/m?3) but can go as high as 0.5?MHz (equivalent electron density, 3.1?×?103?el/m?3, during noon) around equinox. In some months, underestimations, though sporadic in nature, up to 0.25?MHz are noted (mostly during sunrise and sunset). At high solar activity, a similar pattern of over-/underestimation is evident. During the entire period of study, over-/under estimations are mostly limited to 0.25?MHz. In very few cases, these exceed 0.25?MHz but are limited to 0.5?MHz. Analysis of hmE reveals that: (1) hmE remains almost constant during ±2 to ±4?h around local noon, (2) hmE values are higher in winter than in spring, summer and autumn, (3) there are two maxima near sunrise and sunset with a noontime minimum in between. During the entire period of study, significant differences between observed hmE and the IRI predictions have been noted. IRI fails to predict hmE and outputs a constant value of 110?km, which is higher than most of the observed values. Over- and under estimations range from 3 to 13?km and from 0 to 3?km respectively.  相似文献   

13.
利用位于赤道异常区的深圳站(22.59°N,113.97°E)2011年1月至2012年12月及2015年1月至2015年12月监测到的GPS-TEC数据,统计分析华南地区电离层闪烁与TEC耗空同时出现、电离层闪烁单独出现和TEC耗空单独出现3种现象的时间和空间分布特性.结果表明:这3种现象均主要发生在春秋季节;闪烁与TEC耗空同时出现、闪烁单独出现和TEC耗空单独出现分别主要发生在纬度为19°-23°N,21°-24°N和24°-26°N的空间区域.探测到闪烁和TEC耗空同时出现、闪烁单独出现和TEC耗空单独出现的时间分别主要分布在20:00LT-22:00LT,21:00LT-23:00LT和22:30LT-23:30LT.闪烁与TEC耗空同时出现、闪烁单独出现和TEC耗空单独出现3种现象的时间和空间分布特性对应了华南地区不规则体和赤道等离子体泡(EPBs)从产生到消失的演变过程.   相似文献   

14.
Using the TEC data at Beijing (39.61°N, 115.89°E)/Yakutsk (62.03°N, 129.68°E) stations of East Asia regions and relevant geomagnetic data from 2010 to 2017, we have studied the time delay of ionospheric storms to geomagnetic storms and compare it with our previous results of Taoyuan (25.02°N, 121.21°E) station (Zhang et al., 2020). The data shows a well-known local time dependence of the time delay, and seasonal dependences are different at these stations. In addition, there is no correlation between the time delay and the magnetic storm intensity /solar activity, except the time delay of negative storms has weakly negative dependence on the solar activity. Comparing with the results of Taoyuan station which is located at EIA region in East Asia, we find that the time delay increases nonlinearly as the latitude decreases due to different ionospheric backgrounds at these places. Moreover, the pre-storm disturbance events are found to have similar statistical characteristics as the pre-storm enhancement in Europe middle latitudes (Bure?ová and La?tovi?ka, 2007). By subtracting the common features of the pre-storm disturbance events, we preliminarily infer that auroral activity might be main driver of the pre-storm disturbance events.  相似文献   

15.
This paper discusses the monthly and seasonal variation of the total electron content (TEC) and the improvement of performance of the IRI model in estimating TEC over Ethiopia during the solar maximum (2013–2016) phase employing as reference the GPS derived TEC data inferred from four GPS receivers installed in different regions of Ethiopia; Assosa (geog 10.05°N, 34.55°E, Geom. 7.01°N), Ambo (8.97°N, 37.86°E, Geom. 5.42°N), Nazret (8.57°N, 39.29°E, Geom. 4.81°N) and Arba Minch (6.06°N, 37.56°E, Geom. 2.62°N). The results reveal that, in the years 2013–2016, the highest peak GPS-derived diurnal VTEC is observed in the March equinox in 2015 over Arba Minch station. Moreover, both the arithmetic mean GPS-derived and modelled VTEC values, generally, show maximum and minimum values in the equinoctial and June solstice months, respectively in 2014–2015. However, in 2013, the minimum and maximum arithmetic mean GPS-derived values are observed in the March equinox and December solstice, respectively. The results also show that, even though overestimation of the modelled VTEC has been observed on most of the hours, all versions of the model are generally good to estimate both the monthly and seasonal diurnal hourly VTEC values, especially in the early morning hours (00:00–03:00?UT or 03:00–06:00?LT). However, it has also been shown that the IRI 2007 and IRI 2012 versions generally perform best in matching the diurnal GPS derived TEC values as compared to that of the IRI 2016 version. In addition, the IRI 2012 version with IRI2001 option for the topside electron density shows the highest overestimation of the VTEC as compared to the other options. None of the versions of the IRI model are proved to be able to capture the effects of geomagnetic storms.  相似文献   

16.
The paper describes the technique that has been implemented to model the electron density distribution above and below the F2 peak making use of only the profiles obtained from the INTERCOSMOS-19 topside ionograms. Each single profile from the satellite height to the ionosphere peak has been fitted by a semi-Epstein layer function of the type used in the DGR model with shape factor variable with altitude. The topside above the satellite height has been extrapolated to match given values of plasmaspheric electron densities to obtain the full topside profile. The bottomside electron density has been calculated by using the maximum electron density and its altitude estimated from the topside ionogram as input for a modified version of the DGR derived profiler that uses model values for the foF1 and foE layers of the ionosphere. Total electron content has also been calculated. Longitudinal cross sections of vertical profiles from latitudes 50° N to 50° S latitude are shown for low and high geomagnetic activity. These cross sections indicate the equatorial anomaly effect and the changes of the shape of low latitude topside ionosphere during geomagnetic active periods. These results and the potentiality of the technique are discussed.  相似文献   

17.
This paper examines the performances of NeQuick2, the latest available IRI-2016, IRI-2012 and IRI-2007 models in describing the monthly and seasonal mean total electron content (TEC) over the East African region. This is to gain insight into the success of the various model types and versions at characterizing the ionosphere within the equatorial ionization anomaly. TEC derived from five Global Positioning System (GPS) receivers installed at Addis Ababa (ADD, 5.33°N, 111.99°E Geog.), Asab (ASAB, 8.67°N, 116.44°E Geog.), Ambo (ABOO, 5.43°N, 111.05°E Geog.), Nairobi (RCMN, ?4.48°N, 108.46°E Geog.) and Nazret (NAZR, 4.78°N, 112.43°E Geog.), are compared with the corresponding values computed using those models during varying solar activity period (1998 and 2008–2015). We found that different models describe the equatorial and anomaly region ionosphere best depending on solar cycle, season and geomagnetic activity levels. Our results show that IRI-2016 is the best model (compared to others in terms of discrepancy range) in estimating the monthly mean GPS-TEC at NAZR, ADD and RCMN stations except at ADD during 2008 and 2012. It is also found that IRI-2012 is the best model in estimating the monthly mean TEC at ABOO station in 2014. IRI show better agreement with observations during June solstice for all the years studied at ADD except in 2012 where NeQuick2 better performs. At NAZR, NeQuick2 better performs in estimating seasonal mean GPS-TEC during 2011, while IRI models are best during 2008–2009. Both NeQuick2 and IRI models underestimate measured TEC for all the seasons at ADD in 2010 but overestimate at NAZR in 2009 and RCMN in 2008. The periodic variations of experimental and modeled TEC have been compared with solar and geomagnetic indices at ABOO and ASAB in 2014 and results indicate that the F10.7 and sunspot number as indices of solar activity seriously affects the TEC variations with periods of 16–32?days followed by the geomagnetic activity on shorter timescales (roughly periods of less than 16?days). In this case, NeQuick2 derived TEC shows better agreement with a long term period variations of GPS-TEC, while IRI-2016 and IRI-2007 show better agreement with observations during short term periodic variations. This indicates that the dependence of NeQuick2 derived TEC on F10.7 is seasonal. Hence, we suggest that representation of geomagnetic activity indices is required for better performance over the low latitude region.  相似文献   

18.
The Chinese Meridian Space Weather Monitoring Project (Meridian Project) is a ground-based geospace monitoring chain in China. It consists of 15 ground-based observation stations located roughly along 120°E longitude and 30°N latitude. In recent two years, using data from the Meridian Project, significant progress has been made in space weather and space physics research. These advances are mainly in four aspects:regional characteristics of space environment above China or along 120°E meridian line, coupling between space spheres at different heights and different physical processes, space weather disturbance and its propagation along the meridian chain, and space weather effects on ground technical facilities.   相似文献   

19.
电离层电流产生的磁场是地磁场卫星测绘时需要剔除的干扰源.利用电离层热层模式TIE-GCM计算电离层中的中性风、重力驱动和压强梯度等形成的电离层电流的全球分布,分析电流在特定位置产生的磁场及磁场三分量随纬度的变化规律.结果表明,E层尤其是磁赤道和极区的电流密度较大,可达103nA·m-2量级,F层电流密度量级约为10nA·m-2.在磁静日(Kp≤ 1)夜间22:00LT-04:00LT,电离层电流在中低纬度(南北纬50°之间)产生的磁场量级为几个nT,且磁场的南北向分量和径向分量基本大于东西向分量.通过与CHAMP卫星磁测数据分析比较,发现TIE-GCM模式计算电离层干扰磁场在中低纬度可以取得较好的结果,但在高纬度地区的效果不理想,还需进一步改进模式以提高计算精度.   相似文献   

20.
The magnitude and causes of changes in the land surface temperature of rural areas have not been extensively studied. The thermal band of Landsat imagery is taken to extract winter, summer, and monsoon season land surface temperature (LST) and relate it to surface parameters over a 30-year period. From the extracted parameters constructed a prospective surface temperature (PST) model using Multivariate Adaptive Regression Splines. The Chandrabhaga river basin in West Bengal of the lateritic Rarh Tract at the Chota Nagpur Plateau fringe was chosen as the study area because it is far from urban influences, to avoid the well-known heat island effect. Over the study period, summer and winter average LST increased linearly by 0.085?°C/y and 0.016?°C/y respectively. These results were validated with air temperature (RMSE?=?x and y, respectively). Over time more of the area is in the higher temperature zones, e.g., in April 2011, 4% area exceeded >32°, whereas in 2015 this proportion reached 52%. PST models of all the seasons were moderate to highly correlate (0.57–0.87) with actual LST, showing the value of this model. It also revealed the relative importance of the regional factors. Based on this information factor management is a scientific step to restrict or minimize the temperature rise effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号