首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 99 毫秒
1.
Measurements of the principal ion species of the F1- and F2- regions have been used to develop an empirical model of the ion composition for altitudes between 150 and 500 km. The species measured by the S3-1 satellite include N+, O+, N2+, NO+ and O2+. The data were obtained near the minimum of the solar cycle, thus limited information on the ionospheric variation with solar flux is available. However, the range of latitude, altitude, local time and geomagnetic activity does provide a useful basis for modeling the F-region. The ion composition measurements have been used to provide a model for relative ion composition which is compatible with the total ion density from the International Reference Ionosphere model.  相似文献   

2.
In-situ measurements of positive ion composition of the ionosphere of Venus are combined in an empirical model which is a key element for the Venus International Reference Atmosphere (VIRA) model. The ion data are obtained from the Pioneer Venus Orbiter Ion Mass Spectrometer (OIMS) which obtained daily measurements beginning in December 1978 and extending to July 1980 when the uncontrolled rise of satellite periapsis height precluded further measurements in the main body of the ionosphere. For this period, measurements of 12 ion species are sorted into altitude and local time bins with altitude extending from 150 to 1000 km. The model results exhibit the appreciable nightside ionosphere found at Venus, the dominance of atomic oxygen ions in the dayside upper ionosphere and the increase in prominence of atomic oxygen and deuterium ions on the nightside. Short term variations, such as the abrupt changes observed in the ionopause, cannot be represented in the model.  相似文献   

3.
Comparisons have been made between the percentage of light ions in the upper ionosphere as predicted by the IRI model and as found in incoherent scatter (ICS) measurements at the stations Millstone Hill, Arecibo and Jicamarca. Major discrepancies are observed in both day and night. The IRI values are always considerably larger than the ICS measurements. Theoretical values are calculated as well, assuming chemical equilibrium and using the MSIS neutral density model /1/. In most cases these theoretical values favour the ICS values; only for the daytime ion composition above Millstone Hill has better agreement with the IRI model been found.  相似文献   

4.
The monitoring of solar wind parameters is a key problem of the space weather program. We are presenting a new solution of plasma parameter determination suitable for small and fast solar wind monitors. The first version will be launched during the SPECTR-R project into a highly elongated orbit with apogee ∼350,000 km. The method is based on simultaneous measurements of the total ion flux and ion integral energy spectrum by six identical Faraday cups. Three of them are dedicated to determination of the ion flow direction, the other three (equipped with control grids supplied by a retarding potential) are used for determination of the density, temperature, and speed of the plasma flow. The version under development is primarily designed for the measurements in the solar wind and tail magnetosheath, thus for velocities range from 270 to 750 km/s, temperatures from 1 to 30 eV, and densities up to 200 cm−3. However, the instrument design can be simply modified for measurements in other regions with a substantial portion of low-energy plasma as a subsolar magnetosheath, cusp or low-latitude boundary layer. Testing of the engineering model shows that the proposed method can provide reliable plasma parameters with a high time resolution (up to 8 Hz). The paper presents not only the method and its technical realization but it documents all advantages and peculiarities of the suggested approach.  相似文献   

5.
Model calculations of the dayside ionosphere of Venus are presented. The coupled continuity and momentum equations were solved for O2+, O+, CO2+, C+, N+, He+, and H+ density distributions, which are compared with measurements from the Pioneer Venus ion mass spectrometer. The agreement between the model results and the measurements is good for some species, such as O+, and rather poor for others, such as N+, indicating that our understanding of the dayside ion composition of Venus is incomplete. The coupled heat conduction equations for ions and electrons were solved and the calculated temperatures compared with Pioneer Venus measurements. It is shown that fluctuations in the magnetic field have a significant effect on the energy balance of the ionosphere.  相似文献   

6.
The Bennett rf ion mass spectrometer (OIMS) on the Pioneer Venus Orbiter was particularly designed to provide variable temporal resolution for measurements of thermal ion composition and density. An Explore-Adapt mode is used to obtain priority for measurement of most prominent ion species, and in a 2/16 configuration, the two dominant ions within the available range of 16 species are selectively sampled at the highest rate of 0.2 sec/sample. The high resolution measurements are combined with independent observations from the magnetic field (OMAG), neutral mass spectrometer (ONMS), and electron temperature (OETP) experiments to investigate sharply structured troughs in the low altitude nightside ion concentrations. The results indicate a close correlation between the structure in the ion distributions and the structured configuration of the magnetic field which is draped about the planet. In the regions of the ion depletions, sharp fluctuations in electron temperature and anomalous increases in the density of neutral gases indicate that the ion depletion may be associated either with dynamic perturbation in the ion and neutral flows, and/or local joule heating. The configuration of the ion flow/magnetic field draping and consequent electric fields for these events must be analyzed in detail to understand the relationships.  相似文献   

7.
An ion model of the lower ionosphere is proposed. It consists of four positive ions: O2+, NO+ and two cluster ions - a simpler CI1 and a more complex CI2. This model well explains the normal component of the winter anomaly (WA) in the D-region, which is recorded by absorption measurements on short radiowaves and rocket experiments at middle (40°N) and high (70°) latitudes. The higher values of the electron density during the winter appear as a result of the lower recombination because of smaller rates of cluster ion formation, i.e. the normal WA can be explained and modelled by the regular seasonal variations of composition, temperature and density.  相似文献   

8.
Based on data from satellite INTERCOSMOS-BULGARIA-1300, the latitudinal distribution of oxygen and helium ions in the topside ionosphere is discussed for night-time equinox at high solar activity. A comparison with the corresponding IRI-79 distribution is made. The vertical IRI ion composition profile is checked with measurements made with VERTICAL-10 rocket. Some recommendations are made in order to improve the IRI-modelling of the ion composition in the topside ionosphere.  相似文献   

9.
本文报道了在法国南部(44°N)上空进行的两次气球飞行实验的部分负离子成分探测结果.利用自然负离子谱计算了某些硫酸离子的热化学常数ΔG, ΔH和ΔS.讨论了上升段测量中气球表面放气造成的离子化学污染.   相似文献   

10.
Energetic ion composition measurements have now been performed from earth orbiting satellites for more than a decade. As early as 1972 we knew that energetic (keV) ions of terrestrial origin represented a non-negligible component of the storm time ring current. We have now assembled a significant body of knowledge concerning energetic ion composition throughout much of the earth's magnetosphere. We know that terrestrial ions are a common component of the hot equatorial magnetospheric plasma in the ring current and the plasma sheet out to ? 23 RE. During periods of enhanced geomagnetic activity this component may become dominant. There is also clear evidence that the terrestrial component (specifically O+) is strongly dependent on solar cycle. Terrestrial ion source, transport, and acceleration regions have been identified in the polar auroral region, over the polar caps, in the magnetospheric boundary layers, and within the magnetotail lobes and plasma sheet boundary layer. Combining our present knowledge of these various magnetospheric ion populations, it is concluded that the primary terrestrial ion circulation pattern associated with enhanced geomagnetic activity involves direct injection from the auroral ion acceleration region into the plasma sheet boundary layer and central plasma sheet. The observed terrestrial component of the magnetospheric boundary layer and magnetotail lobes are inadequate to provide the required influx. They may, however, contribute significantly to the maintenence of the plasma sheet terrestrial ion population, particularly during periods of reduced geomagnetic activity. It is further concluded, on the basis of the relative energy distributions of H+ and O+ in the plasma sheet, that O+ probably contributes significantly to the ring current population at energies inaccessible to present ion composition instrumentation (? 30 keV).  相似文献   

11.
We present a model for composition of heavy ions in the solar energetic particles (SEP). The SEP composition in a typical large solar particle event reflects the composition of the Sun, with adjustments due to fractionation effects which depend on the first ionization potential (FIP) of the ion and on the ratio of ionic charge to mass (Q/M). Flare-to-flare variations in composition are represented by parameters describing these fractionation effects and the distributions of these parameters are presented.  相似文献   

12.
The measurements of positive ion composition in the high latitude D-region have revealed an excess of 34+ under distrubed conditions which has been interpreted as H2O2+. At the same altitude range near the transition height oxonium ions were measured as well. This paper presents a new model for the production and loss of oxonium ions with their production from H2O2+ + H2O → H3O+ + HO2 and their loss by attachment of N2 and/or CO2. A reaction constant of 8.5×10?28 (300/T)4 cm6s?1 has been obtained for the three body attachment H3O+ + CO2 + M → H3O+.CO2 + M from the measured density profile of 63+ in flight 18.1020. Mesospheric H2O and H2O2 densities are inferred from measurements of four high latitude ion compositions based on the oxonium model. The mixing ratios of hydrogen peroxide are up to two orders of magnitude higher compared to previous model calculations. In order to explain the missing production of odd hydrogen, we consider larger O(1D) densities, surface reactions of O(3P) on particles, and cathalytic photodissociation of water vapor on aerosol particles.  相似文献   

13.
Based on a simplified theoretical interpretation of the composition measurements with the ONMS and OIMS experiments on Pioneer Venus, the conclusion was drawn that the rotation rate of the thermosphere should be close (within a factor of two) to that of the lower atmosphere. A more realistic three-dimensional model of the thermosphere dynamics is now being developed, considering non-linear processes, higher order modes and collisional momentum exchange between the major species CO2, CO and O, which describes the diurnal variations in temperature and composition (Niemann et al., JGR, 1980). The computed horizontal winds are about 300 m/sec near the terminators and poles. Results are also presented from a two-dimensional (quasi-axisymmetric) spectral model which describes the four day superrotation in the lower atmosphere of Venus.  相似文献   

14.
The incoherent scatter radar (ISR) facility in Kharkov, Ukraine (49.6°N, 36.3°E) measures vertical profiles of electron density, electron and ion temperature, and ion composition of the ionospheric plasma up to 1100 km altitude. Acquired measurements constitute an accurate ionospheric reference dataset for validation of the variety of models and alternative measurement techniques. We describe preliminary results of comparing the Kharkov ISR profiles to the international reference ionosphere (IRI), an empirical model recognized for its reliable representation of the monthly-median climatology of the density and temperature profiles during quiet-time conditions, with certain extensions to the storm times. We limited our comparison to only quiet geomagnetic conditions during the autumnal equinoxes of 2007 and 2008. Overall, we observe good qualitative agreement between model and data both in time and with altitude. Magnitude-wise, the measured and modeled electron density and plasma temperatures profiles appear different. We discovered that representation accuracy improves significantly when IRI is driven by observed-averaged values of the solar activity index rather than their predictions. This result motivated us to study IRI performance throughout protracted solar minimum of the 24th cycle. The paper summarizes our observations and recommendations for optimal use of the IRI.  相似文献   

15.
Recent in situ measurements with balloon borne quadrupole mass spectrometers, between 20 and 45 km altitude, are reviewed and discussed.The major stratospheric positive ions observed are proton hydrates [H+(H2O)n] and non proton hydrates of the form H+Xm(H2O)2. The data analysis allows a derivation of the vertical mixing ratio profile of X (most probably CH3CN), which is compared with recent model calculations. From negative ion composition data, showing the presence of NO3? and HSO4? cluster ions, the density of sulfuric acid in the stratosphere is deduced. The implications of these findings on our understanding of the sulfur chemistry is briefly treated.Finally some other aspects such as contamination, cluster break up and the use of stratospheric ion mass spectra for determination of thermochemical data and other minor constituents are discussed.  相似文献   

16.
As a part of the physical-technical program of the heavy-ion therapy project at GSI we have investigated the nuclear fragmentation of high-energy ion beams delivered by the heavy-ion synchrotron SIS, using water as a tissue-equivalent target. For a direct comparison of fragmentation properties, beams of 10B, 12C, 14N, and 16O were produced simultaneously as secondary beams from a primary 18O beam and separated in flight by magnetic beam analysis. The Z-distributions of beam fragments produced in the water target were measured via energy loss in a large ionisation chamber and a scintillator telescope. From these data we obtained both total and partial charge-changing cross sections. In addition we have performed Bragg measurements using two parallel-plate ionization chambers and a water target of variable length. The detailed shape of the measured Bragg curves and the measured cross sections are in good agreement with model calculations based on semi-empirical formulae.  相似文献   

17.
The ram current to ion traps and the insensitivity of ion conductivity to compressibility provide the basis of robust techniques for middle atmosphere measurements. Gerdien condensers are more difficult to implement but provide more information. Mesospheric electrical conductivity shows many orders of magnitude variability, with depressions below gas phase model values indicating dominance by aerosol particles. The mobility of these ions has been directly measured and indicates particles of thousands of AMU. Large mesospheric fields have come into question, and diagnostic measurements show that many such measurements may be artifacts. However, some measurements of V/m fields with symmetrical and redundant sensors appear to be real. These fields complicate the “mapping” picture of electrical coupling and may also modulate the transport of aerosol particles. They are probably related to neutral atmosphere dynamics and/or the aerosol particles. Lightning couples much more energy to the middle atmosphere and above than previously suspected, primarily in the ELF-ULF range. There are many important unanswered questions in this relatively unexplored frontier area which may be answered with low cost balloon and sounding rocket experiments.  相似文献   

18.
近几年卫星空间电场测量经常证认出局地非线性离子静电波,它们可能与极光粒子加速有直接关系。这些静电波被认为或者是离子声波模的演化,或者是静电离子逥旋波模的演化结果。本文研究了磁场中斜传播小振幅离子非线性波的演化,得到非线性Schrodinger方程。结果表明离子声孤波和离子迴旋孤波都是可能的。计算结果与卫星S(3-3)电场测量比较,可以很好说明部分测量结果。   相似文献   

19.
A rapid analytical procedure for the prediction of a micro-dosimeter response function in low Earth orbit (LEO), correlated with the Space Transportation System (STS, shuttle) Tissue Equivalent Proportional Counter (TEPC) measurements is presented. The analytical model takes into consideration the energy loss straggling and chord length distribution of the detector, and is capable of predicting energy deposition fluctuations in a cylindrical micro-volume of arbitrary aspect ratio (height/diameter) by incoming ions through both direct and indirect (δ ray) events. At any designated (ray traced) target point within the vehicle, the model accepts the differential flux spectrum of Galactic Cosmic Rays (GCRs) and/or trapped protons at LEO as input. On a desktop PC, the response function of TEPC for each ion in the GCR/trapped field is computed at the average rate of 30 s/ion. The ionizing radiation environment at LEO is represented by O’Neill’s GCR model (2004), covering charged particles in the 1 ? Z ? 28 range. O’Neill’s free space GCR model is coupled with the Langley Research Center (LaRC) angular dependent geomagnetic cutoff model to compute the transmission coefficient in LEO. The trapped proton environment is represented by a LaRC developed time dependent procedure which couples the AP8MIN/AP8MAX, Deep River Neutron Monitor (DRNM) and F10.7 solar radio frequency measurements. The albedo neutron environment is represented by the extrapolation of the Atmospheric Ionizing Radiation (AIR) measurements. The charged particle transport calculations correlated with STS 51 and 114 flights are accomplished by using the most recent version (2005) of the LaRC deterministic High charge (Z) and Energy TRaNsport (HZETRN) code. We present the correlations between the TEPC model predictions (response function) and TEPC measured differential/integral spectra in the lineal energy (y) domain for both GCR and trapped protons, with the conclusion that the model correctly accounts for the increase in flux at low y values where energetic ions are the primary contributor. We further discuss that, even with the incorporation of angular dependency in the cutoffs, comparison of the GCR differential/integral flux between STS 51 and 114 TEPC measured data and current calculations indicates that there still exists an underestimation by the simulations at low to mid range y values. This underestimation is partly related the exclusion of the secondary pion particle production from the current version of HZETRN.  相似文献   

20.
A comprehensive model is developed using the updated rate coefficients and transition probabilities to study the redline dayglow emission of atomic oxygen. The solar EUV fluxes are obtained from the Solar Irradiance Platform (SIP), and incorporated into the model successfully. All possible production and loss mechanisms of O(1D) are considered in the model. The neutral number densities and temperature are adopted from the NRLMSISE-00 model. The ion and electron densities, and electron temperature are adopted from the IRI-07 model. The model results are validated with the help of measurements as provided by the Wind Imaging Interferometer (WINDII) on board Upper Atmosphere Research Satellite (UARS). The present results are found in better agreement with the measurements in comparison with the earlier model. The measured volume emission rate profiles are reproduced quite well by the present model. The model results show that the updated rate coefficients and transition probabilities are quite consistent and may be used in the aeronomical studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号