首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Recent findings of the catastrophic balloon failures investigation in the U.S.A. indicate that very large gross inflations, in balloons using present design philosophy, over-stress currently available materials. External caps are proposed as an economic approach to reducting those stresses to an acceptable level.  相似文献   

2.
An abnormally large number of catastrophic failures have occurred in recent years which have prompted a number of investigations. This paper documents the efforts by Winzen engineers to determine the cause of these dangerous failures. It is concluded that catastrophic failure will occur if internal caps separate from the wall of the balloon at too low an altitude. Cap separation may be prevented by the use of external caps.  相似文献   

3.
As we celebrate the centennial year of the discovery of cosmic rays on a manned balloon, it seems appropriate to reflect on the evolution of ballooning and its scientific impact. Balloons have been used for scientific research since they were invented in France more than 200 years ago. Ballooning was revolutionized in 1950 with the introduction of the so-called natural shape balloon with integral load tapes. This basic design has been used with more or less continuously improved materials for scientific balloon flights for more than a half century, including long-duration balloon (LDB) flights around Antarctica for the past two decades. The U.S. National Aeronautics and Space Administration (NASA) is currently developing the next generation super-pressure balloon that would enable extended duration missions above 99.5% of the Earth’s atmosphere at any latitude. The Astro2010 Decadal Survey report supports super-pressure balloon development and the giant step forward it offers with ultra-long-duration balloon (ULDB) flights at constant altitudes for about 100 days.  相似文献   

4.
Development overview of the revised NASA Ultra Long Duration Balloon   总被引:1,自引:0,他引:1  
The desire for longer duration stratospheric flights at constant float altitudes for heavy payloads has been the focus of the development of the National Aeronautics and Space Administration’s (NASA) Ultra Long Duration Balloon (ULDB) effort. Recent efforts have focused on ground testing and analysis to understand the previously observed issue of balloon deployment. A revised approach to the pumpkin balloon design has been tested through ground testing of model balloons and through two test flights. The design approach does not require foreshortening, and will significantly reduce the balloon handling during manufacture reducing the chances of inducing damage to the envelope. Successful ground testing of model balloons lead to the fabrication and test flight of a ∼176,000 m3 (∼6.2 MCF – Million Cubic Foot) balloon. Pre-flight analytical predictions predicted that the proposed flight balloon design to be stable and should fully deploy. This paper provides an overview of this first test flight of the revised Ultra Long Duration Balloon design which was a short domestic test flight from Ft. Sumner, NM, USA. This balloon fully deployed, but developed a leak under pressurization. After an extensive investigation to the cause of the leak, a second test flight balloon was fabricated. This ∼176,000 m3 (∼6.2 MCF) balloon was flown from Kiruna, Sweden in June of 2006. Flight results for both test flights, including flight performance are presented.  相似文献   

5.
The lobes of the NASA ULDB pumpkin-shaped super-pressure balloons are made of a thin polymeric film that shows considerable time-dependent behaviour. A nonlinear viscoelastic model based on experimental measurements has been recently established for this film. This paper presents a simulation of the viscoelastic behaviour of ULDB balloons with the finite element software ABAQUS. First, the standard viscoelastic modelling capabilities available in ABAQUS are examined, but are found of limited accuracy even for the case of simple uniaxial creep tests on ULDB films. Then, a nonlinear viscoelastic constitutive model is implemented by means of a user-defined subroutine. This approach is verified by means of biaxial creep experiments on pressurized cylinders and is found to be accurate provided that the film anisotropy is also included in the model. A preliminary set of predictions for a single lobe of a ULDB is presented at the end of the paper. It indicates that time-dependent effects in a balloon structure can lead to significant stress redistribution and large increases in the transverse strains in the lobes.  相似文献   

6.
The essential reason of the lobed-pumpkin shaped super-pressure balloon to withstand against the high pressure is that the local curvature of the balloon film is kept small. Recently, it has been found that the small local curvature can also be obtained if the balloon is covered by a diamond-shaped net with a vertically elongated shape. The development of the super-pressure balloon using this method was started from a 3-m balloon with a polyethylene film covered by a net using Kevlar ropes. The ground inflation test showed the expected high burst pressure. Then, a 6-m and a 12-m balloon using a polyethylene film and a net using the Vectran were developed and stable deployment was checked through the ground inflation tests. The flight test of a 3000 m3 balloon was performed in 2013 and shown to resist a pressure of at least 400 Pa. In the future, after testing a new design to relax a possible stress concentration around the polar area, test flights of scaled balloons will be performed gradually enlarging their size. The goal is to launch a 300,000 m3 super-pressure balloon.  相似文献   

7.
Activities in scientific ballooning in Japan during 1998–1999 are reported. The total number of scientific balloons flown in Japan in 1998 and 1999 was sixteen, eight flights in each year. The scientific objectives were observations of high energy cosmic electrons, air samplings at various altitudes, monitoring of atmospheric ozone density, Galactic infrared observations, and test flights of new type balloons. Balloon expeditions were conducted in Antarctica by the National Institute of Polar Research, in Russia, in Canada and in India in collaboration with foreign countries' institutes to investigate cosmic rays, Galactic infrared radiation, and Earth's atmosphere. There were three flights in Antarctica, four flights in Russia, three flights in Canada and two flights in India. Four test balloons were flown for balloon technology, which included pumpkin-type super-pressure balloon and a balloon made with ultra-thin polyethylene film of 3.4 μm thickness.  相似文献   

8.
Transpacific balloon flights with the University of California, Riverside (UCR) double scatter telescope are discussed. With flight durations from 5 days up to perhaps 15 days the long observation times necessary for medium energy (1–30 MeV) gamma ray astronomy can be obtained. These flights would be made under the auspices of the Joint U.S.-Japan Balloon Flight Program at NASA. We propose that flights can provide at least 30 hours of observation time per flight for many discrete source candidates and 120 hours for detecting low intensity cosmic gamma ray bursts.  相似文献   

9.
A thorough analysis of balloon flights made from Hyderabad, India (Latitude 17°28′N, Longitude 78°35′E), and other equatorial sites has been made. It has been shown that limited success is expected for flights made from equatorial latitudes with balloons made out of natural colour polyethylene film, since the best known balloon film in the world today viz. Winzen Stratofilm is tested for low temperature brittleness only at ?80°C., whereas the tropopause temperatures over equatorial latitudes vary between ?80°C and ?90°C. The success becomes even more critical when flights are made with heavy payloads and larger balloons particularly at night when in the absence of solar radiation the balloon film becomes more susceptible to low temperature brittle failure. It is recommended that in case of capped balloons longer caps should be used to fully cover the inflated protion of the balloon at the higher level equatorial tropopause. It is also advised that the conditions such as wind shears in the tropopause should be critically studied before launching and a day with the tropopause temperature nearer to ?80°C should be chosen. Special care also should be taken while handling the balloon on ground and during launching phase. Properties of Winzen Stratofilm have been critically studied and fresh mandates have been recommended on the basis of limiting values of film stresses which caused balloon failures in the equatorial tropopause. It is also emphasized that the data on such flights is still meagre especially for flights with heavy payloads and larger balloons. It has been also shown that it is safest to use balloons made out of grey coloured film which retains its flexibility with the absorption of solar radiation, the success obtained with such balloons so far being 100%. The drawback, however, is that these balloons cannot be used for night flights. Stratospheric wind regimes over Hyderabad are also discussed with a view to determine the period over which long duration flights can be made. The data available, however, is meagre and it is recommended that more frequent special wind ascents be made to collect adequate statistical data from which reliable conclusions could be drawn through critical analysis.  相似文献   

10.
Ultra long duration balloons (ULDB), currently under development by the National Aeronautics and Space Administration (NASA), requires the use of high strength fibers in the selected super-pressure pumpkin design. The pumpkin shape balloon concept allows clear separation of the load transferring functions of the major structural elements of the pneumatic envelope, the tendons and the film. Essentially, the film provides the gas barrier and transfers only local pressure load to the tendons. The tendons, in the mean time, provide the global pressure containing strength. In that manner, the strength requirement for the film only depends on local parameters. The tendon is made of p-phenylene-2,6-benzobisoxazole (PBO) fibers, which is selected due to its high strength to weight ratio when compared to other high performance, commercially available, fibers. High strength fibers, however, are known to degrade upon exposure to light, particularly at short wavelengths. This paper reports the results of an investigation of the resistance of four commercial high strength fibers to ultra violet (UV) exposure. The results indicate that exposing high strength fibers in continuous yarn form to UV led to serious loss in strength of the fibers except for Spectra® fibers. The adverse changes in mechanical behavior occurred over short duration of exposure compared to the 100 day duration targeted for these missions. UV blocking finishes to improve the UV resistance of these fibers are being investigated. The application of these specially formulated coatings is expected to lead to significant improvement of the UV resistance of these high performance fibers. In this publication, we report on the mechanical behavior of the fibers pre- and post-exposure to UV, but without application of the blocking finishes.  相似文献   

11.
  总被引:3,自引:3,他引:0  
针对平流层气球的热动力学仿真问题,提出一个可以计算升空轨迹、速度变化以及气球蒙皮温度分布的综合模型.主要分析了气球基本热力学行为和受力状况,建立气球动力学和运动学方程,以计算升空过程的轨迹和速度变化.通过将气球蒙皮分割成若干面元,研究了蒙皮面元瞬态能量平衡方程,以计算气球蒙皮温度分布.在热力学、动力学和运动学分析的基础上,建立气球综合热动力学仿真模型.引入实测风场数据,计算在实际风场条件下,平流层气球升空和驻留阶段任意时刻的热力学特性.  相似文献   

12.
Many challenges are presented by biological degradation in a bioregenerative Controlled Ecological Life Support System (CELSS) as envisioned by the U.S. National Aeronautics and Space Administration (NASA). In the studies conducted with biodegradative microorganism indigenous to sweetpotato fields, it was determined that a particle size of 75 microns and incubation temperature of 30 degrees C were optimal for degradation. The composition of the inedible biomass and characterization of plant nutrient solution indicated the presence of potential energy sources to drive microbial transformations of plant waste. Selected indigenous soil isolates with ligno-cellulolytic or sulfate-reducing ability were utilized in biological studies and demonstrated diversity in ability to reduce sulfate in solution and to utilize alternative carbon sources: a lignin analog--4-hydroxy, 3-methoxy cinnamic acid, cellulose, arabinose, glucose, sucrose, mannitol, galactose, ascorbic acid.  相似文献   

13.
Development of a balloon to fly at higher altitudes is one of the most attractive challenges for scientific balloon technologies. After reaching the highest balloon altitude of 53.0 km using the 3.4 μm film in 2002, a thinner balloon film with a thickness of 2.8 μm was developed. A 5000 m3 balloon made with this film was launched successfully in 2004. However, three 60,000 m3 balloons with the same film launched in 2005, 2006, and 2007, failed during ascent. The mechanical properties of the 2.8 μm film were investigated intensively to look for degradation of the ultimate strength and its elongation as compared to the other thicker balloon films. The requirement of the balloon film was also studied using an empirical and a physical model assuming an axis-symmetrical balloon shape and the static pressure. It was found that the film was strong enough. A stress due to the dynamic pressure by the wind shear is considered as the possible reason for the unsuccessful flights. A 80,000 m3 balloon with cap films covering 9 m from the balloon top will be launch in 2011 to test the appropriateness of this reinforcement.  相似文献   

14.
The zero pressure plastic balloons used for high altitude studies are generally made from polyethylene material. Tensile properties of the thin film polymer are the key parameters for material selection due to extremely low temperature of −90 °C encountered by the balloons in the tropopause region during the ascent at equatorial latitudes. The physical and structural properties of the material determine the uniformity of the stress distribution over the entire shell. Load stresses from the suspended load propagate via load tapes heat sealed along with the gore seals as per the balloon design. A balance between this heat seal strength and the film strength is a desirable property of the basic resin in terms of the bubble strength, gauge uniformity, and long-term storage properties. In addition, the design of the top shell of the balloon and its stress distribution play an important role since only a fraction of the balloon is deployed during the filling operation and the ascent. In this paper we describe the mechanical properties of the ‘ANTRIX’ film developed by us and the optimized design of single cap balloons, which have been successfully used in our experiments over the past 5 years.  相似文献   

15.
The selection of a suitable material for use as a reliable stratospheric balloon gas barrier and structural component is based on a variety of properties. Due to a more desirable combination of properties, the low density polyethylene that has been used for the last half century has been replaced during the last decade by linear low density polyethylene (LLDPE). This paper describes the effort to characterize the time dependent properties of a 38 micron coextrusion of LLDPE. The nonlinear viscoelastic constitutive equation presented may be used to accurately describe the creep and/or relaxation of this film when subjected to a biaxial state of stress, such as might be required for an extended balloon flight. Recent laboratory data have been used to modify an existing model of LLDPE to account for differences caused by the coextrusion process. The new model will facilitate structural design optimization and reliability assessment, and may be further utilized as a predictive tool to benefit in-flight operations. Current structural analysis techniques based on linear elastic properties have predicted stresses in excess of those which would actually exist.  相似文献   

16.
The High Altitude Student Platform (HASP) was originally conceived to provide student groups with access to the near-space environment for flight durations and experiment capabilities intermediate between what is possible with small sounding balloons and low Earth orbit rocket launches. HASP is designed to carry up to twelve student payloads to an altitude of about 36 km with flight durations of 15–20 h using a small zero-pressure polyethylene film balloon. This provides a flight capability that can be used to flight-test compact satellites, prototypes and other small payloads designed and built by students. HASP includes a standard mechanical, power and communication interface for the student payload to simplify integration and allows the payloads to be fully exercised. Over the last two years a partnership between the NASA Balloon Program Office (BPO), Columbia Scientific Balloon Facility (CSBF), Louisiana State University (LSU), the Louisiana Board of Regents (BoR), and the Louisiana Space Consortium (LaSPACE) has led to the development, construction and, finally, the first flight of HASP with a complement of eight student payloads on September 4, 2006. Here we discuss the primary as-built HASP systems and features, the student payload interface, HASP performance during the first flight and plans for continuing HASP flights. The HASP project maintains a website at http://laspace.lsu.edu/hasp/ where flight application, interface documentation and status information can be obtained.  相似文献   

17.
The payload for the U.S. X-ray Timing Explorer is currently being selected by NASA. Some of the possible instrumental capabilities and scientific objectives of the mission are described.  相似文献   

18.
Launching a large balloon in a limited launching field is a long standing problem in Japan. The largest balloon ever launched successfully was 200,000 m3 in volume. It was launched in 1973. A larger balloon with a volume of 500,000 m3 was tried later, but it burst during the ascending phase. For launching balloons with a large lift exceeding 500 kg, the conventional static launching method had the most serious problem with possible damage to the polyethylene film of the balloon caused by the holding mechanism. After that, we had developed a new static launching method to launch balloons with a total lift of 1.0 ton. For launching a large balloon with a total lift above 1.5 ton, the new static launching method had a weak point in that if there was an air bubble in the folded part of the balloon, it may puncture the balloon as it is pushed by a spool. To avoid this problem, we developed a semi-dynamic launching method in 1999 using a launcher fixed to the ground leaving a freedom of rotation around the vertical axis. We have launched some balloons using the method and have gradually enriched our experience in using this system.In 2003, we successfully launched a balloon with a volume of 500,000 m3 by using the method. This balloon was made of polyethylene films with a thickness of 20 μm and it is the largest balloon ever launched in Japan.  相似文献   

19.
Current status of scientific ballooning in Japan is reviewed. First, I describe successful application of balloon technologies to construct a vessel of transparent plastic film, to contain about 1000 tons of liquid scintillator in Kamioka Liquid Scintillator Anti-Neutrino Detector (KamLAND). KamLAND is a project to study neutrino oscillation phenomena, by detecting anti-neutrinos produced in distant nuclear reactors. Next, I describe high altitude balloons developed by the ISAS balloon group. They developed balloons made from ultra-thin polyethylene film, producing a balloon of volume 60,000 m3 which successfully reached an altitude of 53 km in 2002. This is a world record, the greatest altitude that a balloon has ever achieved. ISAS is applying further effort to develop balloons with even thinner films, to achieve a higher altitude than 53 km. Other recent activities by the ISAS balloon group are briefly described.I also review scientific ballooning projects now operating in Japan, particularly focusing on the Balloon-Borne Experiment with a Superconducting Spectrometer (BESS) program. This is a US–Japan collaborative program that has carried out very precise measurements of antiprotons, protons and other components in primary cosmic rays, as well as measuring the fluxes of atmospheric muons and other components. The results of these observations give us important information to improve our understanding of the production mechanism of antiprotons observed in the primary cosmic rays. The data are also important for analysis of atmospheric neutrino events observed by Super-Kamiokande and other ground-based neutrino detectors. Future prospects of BESS and other balloon-borne cosmic-ray research programs are also presented.  相似文献   

20.
Data acquired by Landsats 1, 2, and 3, are beginning to provide the information on which an improved mineral and energy resource exploration strategy can be based. Landsat 4 is expected to augment this capability with its higher resolution (30 m) and additional spectral bands in the Thematic Mapper (TM) designed specifically to discriminate clay minerals associated with mineral alteration. In addition, a new global magnetic anomaly map, derived from the recent Magsat mission, has recently been compiled by the National Aeronautics and Space Administration (NASA), the U.S. Geological Survey (USGS), and others. Preliminary, extremely small-scale renditions of this map indicate that global coverage is nearly complete and that the map will improve upon a previous one derived from Polar Orbiting Geophysical Observatory (POGO) data. Digital processing of the Landsat image data and Magsat geophysical data can be used to create three-dimensional stereoscopic models for which Landsat images provide surface reference to deep structural anomalies.Comparative studies of national Landsat lineament maps, Magsat stereoscopic models, and metallogenic information derived from the Computerized Resources Information Bank (CRIB) inventory of U.S. mineral resources, provide a way of identifying and selecting exploration areas that have mineral resource potential. Landsat images and computer-compatible tapes can provide new and better mosaics and also provide the capability for a closer look at promising sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号