首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 112 毫秒
1.
针对轻质异形冠结构设计问题,提出了基于结构强度和振动分析的锯齿叶冠轮廓切除原则,采用拓扑优化确定了锯齿叶冠2维切除线,通过有限元计算得出叶冠优化后对叶盘结构典型部位应力水平、振动特性的影响。静强度计算结果表明:叶冠优化后在叶身与上、下缘板连接处Von-Mises应力分别降低16.1%、5.6%,在叶冠"Z"形凹口处Von-Mises应力降低24.5%,去除的叶冠质量占叶片质量的2.4%;模态分析和谐响应分析结果表明:叶冠优化后对叶盘结构振动特性不产生负面影响,保证了叶冠的阻尼减振作用。  相似文献   

2.
在低压涡轮叶片异型冠结构设计研究的基础上,探索异型冠结构优化设计方法。为了达到减轻质量的目的,在传统锯齿冠结构的基础上提出异型冠结构的初步设计方案,并以软件UG NX为平台,实现带异型冠涡轮叶片的参数化设计。通过对异型冠结构参数的灵敏度分析,制定了涡轮叶片异型冠结构的双目标优化设计流程。该方法实现了在保证异型冠结构强度及刚度的前提下,叶冠质量最轻及叶冠质心位置最优调控的目标。优化结果表明:叶冠质量降低了53.05%,最大应力下降了43.41%,最大径向变形量下降了45.80%。   相似文献   

3.
论述了涡轮叶片锯齿冠蠕动磨削加工工艺方法,包括设备和工艺参数选择、金刚石滚轮制造和砂轮修整方法。  相似文献   

4.
涡轮叶片锯齿冠结构设计的实践与思考   总被引:2,自引:0,他引:2  
涡轮叶片锯齿冠的设计对于保证发动机的可靠性、寿命和安全至关重要。简要介绍了锯齿冠结构设计的指导思想、技术要求、依据和程序;重点分析了中国自行研制的某型高性能加力式双转子涡轮喷气发动机低压涡轮锯齿冠结构设计的特点,并进行了试车考核,收到了良好效果。  相似文献   

5.
通过系列雷达散射截面(RCS)测试,研究分析了锯齿台阶电磁散射特性与其锯齿齿数、锯齿角度、相对于电磁波入射方向的俯仰角之间的变化关系,并将锯齿台阶散射结果与单直台阶进行比较,分析了各参数对锯齿台阶散射的影响。实验结果表明:对于相同齿数的锯齿台阶,当锯齿角度为适当钝角时,可得到较好的散射特性;对于同一锯齿台阶,随其相对于电磁波照射方向的俯角增大,在一定角度范围内其RCS呈下降趋势,散射特性得到改善。  相似文献   

6.
针对锯齿冠低压涡轮工作叶片在使用过程中发生的叶冠错位故障,在综合分析各次叶冠错位故障发生原因的基础上,总结了锯齿冠低压涡轮工作叶片叶冠错位模式,绘制了模式图,并针对各种叶冠错位模式提出了1套完整的锯齿冠低压涡轮工作叶片预防叶冠错位的设计方法。在2型发动机上进行应用的结果表明,本方法是切实可行的。  相似文献   

7.
几种紧凑回热面传热和流动的实验和数值研究   总被引:1,自引:1,他引:0  
运用计算流体动力学方法,建立单元控制体模型,对回热器主要型面(不锈钢锯齿型面、CC型一次表面)的传热及流动特性进行了数值模拟,并与实验结果进行对比,结果表明,数值结果与实验结果吻合的较好.在此基础上,研究了CC型面结构参数等对传热流动性能的影响,并且通过j/f的大小比较了不同结构参数下CC型面以及不锈钢锯齿型面的表面性能,为回热器的优化设计提供依据.   相似文献   

8.
锯齿冠涡轮叶片在发动机起动过程中会产生较大的热应力。这种热应力与离心应力、气动应力合成的综合应力可能引起涡轮叶片的低循环疲劳失效。建立了瞬态温度场的热传导、热弹性相似关系 ,通过满足热相似条件的热模拟试验 ,分析了某型锯齿冠涡轮叶片在发动机起动过程的瞬态热应变和热应力 ,其结果为分析该型叶片的低循环疲劳失效原因提供了依据 ,同时讨论了叶冠结构因素对热应力的影响。  相似文献   

9.
锯齿尾缘叶片气动特性和绕流流场的数值研究   总被引:2,自引:1,他引:1       下载免费PDF全文
以基于NACA 0018翼型的锯齿尾缘仿生叶片为研究对象,采用大涡模拟的方法研究锯齿相对齿宽与相对齿高对锯齿尾缘叶片的气动特性和非定常绕流流场的影响规律和机制.研究表明,尾缘锯齿参数对叶片气动性能的影响是复杂的非线性过程,在一定来流攻角范围内能提高升阻比,但失速提前.如在9.4°~14.8°来流攻角范围内,不同相对齿宽系列叶片的升阻比高于原始叶片,升阻比与锯齿相对齿宽之间没有线性关系.研究还表明,锯齿尾缘能延迟边界层分离,加速尾迹的流动掺混和能量扩散,改变非定常涡结构和涡脱落频率.相对齿高的变化对非定常流动特性的影响更为显著.尾缘锯齿诱导的二次湍流射流和吸力面侧反向涡对改变了原始叶片的绕翼环量,进而影响锯齿尾缘叶片的气动特性和绕流流场特性.   相似文献   

10.
锯齿型喷口抑制热喷流噪声的实验研究   总被引:3,自引:1,他引:3       下载免费PDF全文
何敬玉  李晓东 《推进技术》2015,36(2):167-174
利用位于全消声室中的热喷流噪声实验台对涵道比为5.5的分开式排气系统进行了吹风实验,研究了在热喷流状态下带有挂件的锯齿型喷口对分开式排气系统远声场的影响,进一步分析了锯齿的分布方式以及结构参数对喷流噪声降噪特性的影响。结果表明,锯齿型喷口可以降低喷流低频段的噪声,并且在下游方向具有最好的低频段降噪效果;锯齿的分布方式对降噪效果的影响最大,仅在内涵添加锯齿结构的喷口可以抑制高频噪声的产生,在下游的总声压级降噪量为1.4~2.4d B;齿数的增加可以抑制高频噪声的增加;切入角的变化对降噪效果有一定的影响,但是远小于分布方式的影响。  相似文献   

11.
某型发动机新件涡轮叶片叶冠掉块故障分析   总被引:2,自引:0,他引:2  
为排除某型发动机新件涡轮叶片叶冠掉块故障,对故障件进行尺寸检测、加工制造工艺复查、断口分析、结构和强度分析等,认为:引发故障的主要原因是叶冠转接R不圆滑、存在尖角,造成应力集中;而相邻原机件叶片弦宽尺寸超差,锯齿形工作接触面积小,以及非工作面局部碰磨,是引发故障的次要因素。采取并验证了有针对性的排故措施。  相似文献   

12.
基于接触状态的叶冠预扭设计   总被引:1,自引:0,他引:1  
针对某工程的实际问题,建立了叶片三维分析模型,应用谐波平衡法和时频转换法,分析了叶冠结构参数与安装状态下叶冠力学性能的关系,总结了叶冠几何参数对接触状态的影响规律;就叶冠接触状态与叶冠磨损之间的关系进行了讨论;基于接触状态的设计理论,提出了叶冠预扭设计基本思想和工程方法.  相似文献   

13.
基于接触状态的叶冠预扭设计和磨损分析   总被引:1,自引:0,他引:1  
接触状态包括接触形式和接触参数,通过接触形式可从结构上判断结构设计的合理性.通过接触参数可从力学性能上评价叶冠的阻尼效果。接触状态能够细致地反映出叶冠工作状态下真实的接触情况.为叶冠结构设计和阻尼效果判定提供更准确、详尽的参考依据。本文针对某工程实际问题,建立了叶片三维分析模型,应用谐波平衡法和时频转换法分析了叶冠结构参数与安装状态下叶冠力学性能的关系,总结了叶冠几何参数对接触状态的影响规律。本文还进一步就叶冠接触状态与叶冠磨损之间的关系进行了讨论,最后基于接触状态的设计理论,提出了叶冠预扭设计的指导思想和工程方法。  相似文献   

14.
航空发动机风扇叶片凸肩的结构设计   总被引:3,自引:0,他引:3  
统计了一些航空发动机风扇叶片凸肩的结构参数 ,探讨了凸肩的形状、位置、厚度、紧度、涂层等对叶片振动特性的影响 ,并通过试验对影响振动特性的部分结构参数进行了效果验证  相似文献   

15.
导风轮轮罩引气对离心式压气机性能影响的数值研究   总被引:4,自引:2,他引:2  
为了研究扩大离心压气机喘振裕度的实用技术 ,以解决某工程设计中的问题 ,用三维粘性计算流体力学 ( CFD)计算软件对离心压气机导风轮轮罩引气措施进行了数值模拟。该项技术在应用中所涉及的设计参数经过了初步的数值试验。从数值模拟的结果中 ,可以看到该项技术对离心压气机性能改进的明显效果   相似文献   

16.
凸肩结构对叶片的干摩擦减振研究——规律分析   总被引:4,自引:2,他引:2  
针对带凸肩的平板叶片,对凸肩阻尼结构的减振规律进行了系统的研究。获得了凸肩接触面初始正压力、接触角度、接触刚度、摩擦系数等多种参数对叶片非线性响应的影响规律。此外,研究了某航空发动机带凸肩风扇叶片的振动响应,分析了凸肩结构对其一阶弯曲振型及某高阶振型的减振效果,确定了该叶片发生疲劳断裂的原因。本文工作对带凸肩结构叶片的设计、排故具有指导意义。   相似文献   

17.
崔济亚 《推进技术》1993,14(4):14-17
利用导叶反扭和前倾,算出叶高反力度只变化0.032,且峰值在叶根附近的涡轮,而间隙站压力仍在叶尖最高。对此作出分析及讨论。并提出进一步研究方向。  相似文献   

18.
多级环境下径向总压畸变影响效应的试验评价   总被引:3,自引:1,他引:2  
为量化评价径向总压畸变对多级轴流压气机气动性能的综合影响效应,将标准畸变模拟网与叶型探针技术相结合,开展了径向总压畸变对压气机性能与稳定性影响的试验研究.试验结果表明:径向总压畸变会轻度恶化压气机总体性能与稳定裕度,轮毂畸变与轮缘畸变对压气机性能的影响程度较为接近,而稳定裕度受轮缘畸变的影响要大于轮毂畸变,最大偏差达2%.两种径向总压畸变在压气机流道内均会迅速径向掺混,气流在强烈掺混过程中也将产生相应的压力损失.径向总压畸变会改变压气机原有级间负荷的分配,使某级的性能得到改善,该物理现象与转子攻角的变化范围相关联.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号