首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Space telecom scenarios like data relay satellite and broadband/broadcast service providers require reliable feeder links with high bandwidth/data rate for the communication between ground station and satellite. Free space optical communication (FSOC) is an attractive alternative to microwave links, improving performance by offering abundant bandwidth at small apertures of the optical terminals. At the same time Near-Earth communication by FSOC avoids interference with other services and is free of regulatory issues. The drawback however is the impairment by the laser propagation through the atmosphere at optical wavelengths. Also to be considered are questions of eye safety for ground personnel and aviation. In this paper we assess the user requirements for typical space telecom scenarios and compare these requirements with solutions using optical data links through the atmosphere. We suggest a site diversity scheme with a number of ground stations and a switching scheme using two optical terminals on-board the satellite. Considering the technology trade-offs between four different optical wavelengths we recommend the future use of 1.5 µm laser technology and calculate a link budget for an atmospheric condition of light haze on the optical path. By comparing link budgets we show an outlook to the future potential use of 10 µm laser technology.  相似文献   

2.
Due to the increasing demand in satellite capacity, driven by applications such as high-definition television (HDTV), 3D-TV and interactive broadband services, higher frequency bands will have to be exploited. The capacity on Ku-band is already becoming scarce and Ka-band systems are more commonly used. It can be expected that 40 and 50 GHz (Q and V band) will have to be used in the future. At these frequencies the wave propagation effects have a significant impact on the performance. The traditional approach of implementing large fade margins in the system design is not suitable as it leads to expensive ground terminals. Fade mitigation by adaptive coding and modulation (ACM) is a cost-efficient method. To investigate the Q/V-band for future commercial exploitation, ESA's ALPHASAT satellite will provide experimental payloads for communications and wave propagation experiments. In Graz a Q/V-band ground station is currently under development. It will be equipped with a 3 m tracking antenna, a 50 W Klystron amplifier and a 290 K LNA. Fade mitigation experiments will be conducted, initially using DVB-S2 modems which allow to vary the modulation scheme, the Forward Error Correction code and the symbol rate under control of the ACM computer. In addition, uplink power control can be combined with the ACM methods. A specially developed signal analyser provides precise measurement of the signal/noise ratio. In addition, propagation data will be available from a beacon receiver, also developed by Joanneum Research. Important goals of the experiment are to investigate the reliability of links under realistic operating conditions using ACM and to develop efficient ACM and signal/noise ratio measurement algorithms which can be later implemented in optimised modems for Q/V-band.The paper describes the ground station design and addresses the planned fade mitigation experiments.  相似文献   

3.
The article deals with the results of the fading fluctuations analysis for telemetry signals in the 2 m and 70 cm bands from the first Moscow State University microsatellite better known as “Universitetsky”. Radio telemetry signals were received from the microsatellite for around 2 years, collecting and recording the power signal data of almost 7500 satellite overpasses. The received signals from about 2300 satellite overpasses had a very low signal to noise ratio (SNR) that caused high transmission losses. The rest of the signals had a SNR high enough to complete the transmission without losses. The main objective of this paper was to find the fading fluctuations caused both by diffusion and by the presence of Gaussian and non Gaussian noise in telemetry signal power data. The purpose was both to characterize the communication channel as well as to elaborate solutions both to improve the communication quality as well as to identify no homogeneous zones in the ionosphere environment. The signal power analysis was based in the observation of statistical characteristics from different power signal components, in particular the components influenced by diffusion and non Gaussian noise. The employed methodology follows the next steps: removing the power signal envelope; taking away the Gaussian noise; obtaining the statistical characteristics from non Gaussian noise, Gaussian noise and envelope; finally identifying the LOS and NLOS signal fading components. For this purpose, the wavelet technique was used to perform the signal decomposition. In particular, the discrete wavelet transform DWT was utilized to carry out the signal de-noising. Then, the results were statistically treated in order to obtain a diffusion index for Rician fading, which are associated with fading in atmosphere and ionosphere layers. In this way the communications channel among satellite and ground station was characterized and a BER parameter was obtained for every satellite overpass, which means an outstanding result when considering that just few papers describe such results for satellite systems. The obtained results are valid not only for satellite communications systems but also for wireless communications systems. These results are the basis for future communications system design, which in our case pursues to reduce the BER parameter in the satellite link. The referred system will employ adaptive error coding schemes as well as channel analyzer algorithms based in the theory exposed in this paper.  相似文献   

4.
Predictions of rain rate and rain attenuation are the most vital steps when analyzing a satellite link operating at frequencies above 10 GHz. Rain attenuation at 12.594 GHz over a satellite path link was measured for the period of 3 years (i.e. January 2002 to December 2004) at Bangkok (13.7°N, 100.7°E). In this paper, a comparison between the current methodologies available to model the impact of rain in earth-space propagation and a dataset of 3 years of rain accumulation with a sampling period of 1 min is made.  相似文献   

5.
The NASA Radiation Belt Storm Probes (RBSP) mission, currently in Phase B, is a two-spacecraft, Earth-orbiting mission, which will launch in 2012. The spacecraft's S-band radio frequency (RF) telecommunications subsystem has three primary functions: provide spacecraft command capability, provide spacecraft telemetry and science data return, and provide accurate Doppler data for navigation. The primary communications link to the ground is via the Johns Hopkins University Applied Physics Laboratory's (JHU/APL) 18 m dish, with secondary links to the NASA 13 m Ground Network and the Tracking and Data Relay Spacecraft System (TDRSS) in single-access mode. The on-board RF subsystem features the APL-built coherent transceiver and in-house builds of a solid-state power amplifier and conical bifilar helix broad-beam antennas. The coherent transceiver provides coherency digitally, and controls the downlink data rate and encoding within its field-programmable gate array (FPGA). The transceiver also provides a critical command decoder (CCD) function, which is used to protect against box-level upsets in the C&DH subsystem. Because RBSP is a spin-stabilized mission, the antennas must be symmetric about the spin axis. Two broad-beam antennas point along both ends of the spin axis, providing communication coverage from boresight to 70°. An RF splitter excites both antennas; therefore, the mission is designed such that no communications are required close to 90° from the spin axis due to the interferometer effect from the two antennas. To maximize the total downlink volume from the spacecraft, the CCSDS File Delivery Protocol (CFDP) has been baselined for the RBSP mission. During real-time ground contacts with the APL ground station, downlinked files are checked for errors. Handshaking between flight and ground CFDP software results in requests to retransmit only the file fragments lost due to dropouts. This allows minimization of RF link margins, thereby maximizing data rate and thus data volume.  相似文献   

6.
Small satellites, weighting between 100 and 200 kg, have witnessed increasing use for a variety of space applications including remote sensing constellations and technology demonstrations. The energy storage/stored power demands of most spacecraft, including small satellites, are currently accommodated by rechargeable batteries—typically nickel–cadmium cells (specific energy of 50 Wh kg−1), or more recently lithium-ion cells (150 Wh kg−1). High energy density is a primary concern for spacecraft energy storage design, and these batteries have been sufficient for most applications. However, constraints on the allowable on-board battery size have limited peak power performance such that the maximum power supply capability of small satellites currently ranges between only 70 and 200 W. This relatively low maximum power limits the capabilities of small satellites in terms of payload design and selection. In order to enhance these satellites' power performance, the research reported in this paper focused on the implementation of super-capacitors as practical rechargeable energy storage medium, and as an alternative to chemical batteries. Compared to batteries, some super-capacitors are able to supply high power at high energy-efficiency, but unfortunately they still have a very low energy density (5–30 Wh kg−1). However, the provision of this high power capability would considerably widen the range of small satellite applications.  相似文献   

7.
《Acta Astronautica》2010,66(11-12):1571-1581
A dual one-way ranging (DOWR) system provides very high accuracy range measurements between two satellites. The GRACE satellite mission implements the DOWR, called KBR (K-band ranging), to measure very small inter-satellite range change in order to map the Earth gravity field. The flight performance of the KBR is analyzed by using a hybrid software simulator that incorporates actual satellite orbit data into a comprehensive KBR simulator, which was earlier used for computing the GRACE baseline accuracy. Three types of experiments were performed. First is the comparison of the flight data with the simulated data in spectral domain. Second is the comparison of double differenced noise level. Third is the comparison of the range-rate difference with GPS clock estimates. The analysis shows a good agreement with the simulation model except some excessive high frequency noise, e.g. 10−4 m/√Hz at 0.1 Hz. The range-rate difference shows 0.003 cyc/s discrepancy with the clock estimates. These analyses are helpful to refine the DOWR simulation model and can be benefit to future DOWR instrument development.  相似文献   

8.
In this paper we calculate the effect of atmospheric dust on the orbital elements of a satellite. Dust storms that originate in the Martian surface may evolve into global storms in the atmosphere that can last for months can affect low orbiter and lander missions. We model the dust as a velocity-square depended drag force acting on a satellite and we derive an appropriate disturbing function that accounts for the effect of dust on the orbit, using a Lagrangean formulation. A first-order perturbation solution of Lagrange's planetary equations of motion indicates that for a local dust storm cloud that has a possible density of 8.323×10−10 kg m−3 at an altitude of 100 km affects the orbital semimajor axis of a 1000 kg satellite up −0.142 m day−1. Regional dust storms of the same density may affect the semimajor axis up to of −0.418 m day−1. Other orbital elements are also affected but to a lesser extent.  相似文献   

9.
《Acta Astronautica》2013,82(2):635-644
The Inner Formation Flying System (IFFS) consisting of an outer satellite and an inner satellite which is a solid sphere proof mass freely flying in the shield cavity can construct a pure gravity orbit to precisely measure the earth gravity field. The gravitational attraction on the inner satellite due to the outer satellite is a significant disturbance source to the pure gravity orbit and is required to be limited to 10−11 m s−2 order. However, the gravitational disturbance force was on 10−9 m s−2 order actually and must be reduced by dedicated compensation mass blocks. The region of relative motion of the inner satellite about its nominal position is within 1 cm in dimension, which raises the complexity of the compensation blocks design. The iterative design strategy of the compensation blocks based on reducing the gravitational attraction at the nominal position of the inner satellite is presented, aiming to guarantee the gravitational force in the relative motion region within requirements after the compensation. The compensation blocks are designed according to the current status of IFFS, and the gravitational disturbance force in the region is reduced to 10−11 ms−2 order with minimized adding mass.  相似文献   

10.
《Acta Astronautica》2010,66(11-12):1765-1771
The ESA SWARM mission will consist of three satellites that will measure the Earth magnetic field. The system calls for metre accuracy knowledge of the measurement locations. To achieve this a GPS receiver is used. At least four GPS signals are tracked to determine the code and carrier ranges, from which the position can be derived. The accuracy improves when using more GPS satellites and by averaging over many measurements. The latter is achieved in ground processing with a model-based orbit prediction, resulting in cm accuracy. The main error contributions in the processing are often measurement errors due to satellite multi-path effects. The multipath effects are characterized by measuring the antenna on a 1.5 m mock-up, representing the 9 m long satellite. In order to verify that the mock-up is representative, extensive electromagnetic simulations were made. The simulations included the antenna and the complete satellite and were then reduced to the antenna and a section of the satellite. The actual design of the antenna was performed with several levels of software. First, a fast bodies-of-revolution simulation found a geometry with the right coverage. Then, a finite element method simulation allowed us to match the antenna at two frequencies simultaneously.  相似文献   

11.
基于星上动态指令调度的卫星使用效能提升技术   总被引:1,自引:0,他引:1  
田志新  汤海涛  王中果  汪大宝  曹京 《宇航学报》2014,35(10):1105-1113
针对传统任务管理模式采用静态约束指令序列导致卫星使用效能的不足,提出一种基于有向图模型的动态约束自适应任务管理方案。采用面向用户的星地任务控制接口,利用地面仿真和星上实时遥测获取任务运行过程的动态约束参数,星载计算机据此动态生成任务指令序列。针对某高性能光学卫星的仿真试验表明,与传统任务管理模式相比,卫星操作接口复杂度减少88.5%,任务注入效率提升699%,有效载荷数据传输效率提升10%,全球数据获取能力提升11%,对我国区域的实时数据获取能力提升100%。方案对遥感卫星在轨运行管理具有借鉴意义。  相似文献   

12.
The ZDPS-1A pico-satellite, developed by the Zhejiang University, is featured with a three-axis stabilizing capability. It is 15×15×15 cm3 cube-shaped satellite with a total mass of 3.5 kg. ZDPS-1A is the first pico-satellite that has been launched successfully in China. The mission of ZDPS-1A is on-orbit system verification of student-build pico-satellite and wide range earth observation with a micro panoramic camera. A miniature momentum wheel is employed to offer gyro stiffness stability in the pitch (orbit normal) axis. Magnetic coils are employed to generate control torques to achieve the three-axis stabilization of nadir-pointing. The attitude sensors employed in the design include two three-axis magnetometers (TAMs), a three-axis gyro, and two sun sensors. Both ground simulations and on-orbit testing are conducted to verify the feasibility of the given attitude determination and control system (ADCS).  相似文献   

13.
We propose a low observable satellite covered by layered materials. The dielectric properties of the composite materials are analyzed using the coaxial air-line method. Our solution could result in cost-effective applications for satellite stealthness. The particle swarm optimization algorithm is used to design and optimize layered absorbers. The obtained reflection is below −20 dB in many frequency subranges, also under an oblique incident condition, within the band 2–18 GHz. The optimized layered absorbers are used as a cloak for cube satellites. In particular, we investigated a very simple geometry by using a finite element commercial software in the band from 2 to 18. Finally, the transmission through an aperture on the satellite surface is analyzed. It is highlighted that the optimized layered absorbers attenuate the electric field within the satellite, improving its immunity against electromagnetic interferences.  相似文献   

14.
针对传统星载铷钟备份设计中对铷钟状态判断不准确和主备切换时输出信号不稳定的不足,在分析时差测算铷钟指标原理和频率信号切换方法的基础上,提出了一种适用于时差定位型卫星铷钟的双钟热备份设计,通过GPS时差测算铷钟频率性能指标,以及无扰切换设计实现频率信号的稳定输出。地面试验表明,铷钟的准确度和稳定度指标测算误差小于5%,频率输出信号在切换时连续稳定,无突波干扰。研究结果可以为后续定位型卫星和导航卫星的高精度时频系统设计提供参考。  相似文献   

15.
On 11 March 2011, an undersea earthquake of magnitude 9.0, the largest ever recorded in Japan, occurred off the Oshika Peninsula on the Pacific coast of the Tohoku region. The hypocentral region extended for 500 km in the north–south direction from Iwate Prefecture to Ibaraki Prefecture, and for 200 km in east–west direction. The earthquake generated a tsunami with a height of more than 10 m and a run-up height of up to 40.0 m in certain places, which inflicted devastating damage on the coastal areas of the Tohoku and Kanto regions. In addition to the tsunami, the earthquake caused shaking, liquefaction, subsidence, and the collapse of dams, causing major damage to vast areas in the Tohoku and Kanto regions and disrupting various types of infrastructure, including communication. In light of this unprecedented damage, satellite communications were important from various perspectives while terrestrial communications systems were damaged, and an objective evaluation of the role played by satellite communications is relevant to its future installation, adoption and use as a standalone or backup system. Furthermore, satellite communications can help reduce the extent of damage, particularly damage to communications systems, inflicted by strong earthquakes in the future. Accordingly, we report a preliminary quantitative evaluation of the role of satellite communications in the Great East Japan Earthquake, of the role of satellite communications if it becomes widespread, and of its expected role in future large-scale earthquakes in terms of the economic effect converted into cost.  相似文献   

16.
《Acta Astronautica》2007,60(8-9):752-762
A study of the evolution and optical detectability of a fragmentation debris cloud in geosynchronous orbit has been carried out. The 1998 NASA breakup model has been used to generate orbit data for 95 fragments larger than 10 cm size from a 1000 kg satellite. The orbital evolution of these fragments is studied using a precision numerical propagator, employing a high-fidelity force model. Although the fragments rapidly disperse throughout the geostationary arc, they remain localised in right ascension of ascending node and inclination, and are driven along a narrow inertial corridor by luni-solar perturbations. The ESA PROOF software is used to study the detectability of the fragments using a 1- and 0.5-m telescope design. The 1-m telescope can detect 82% of the fragments (down to 13 cm in size) whilst the 0.5-m telescope can detect 39% of the fragments (down to 30 cm size). Due to the large along-track spread of the fragments, a time limit of 1-month post-breakup can be established for a space surveillance system to catalogue the breakup fragments. After this time the angular separation is such that the fragments disperse into the background population, and are no longer distinguishable as originating from a common breakup event.  相似文献   

17.
This paper concerns the drag-free and attitude control (DFAC) of the European Gravity field and steady-state Ocean Circulation Explorer satellite (GOCE), during the science phase. GOCE aims to determine the Earth's gravity field with high accuracy and spatial resolution, through complementary space techniques such as gravity gradiometry and precise orbit determination. Both techniques rely on accurate attitude and drag-free control, especially in the gradiometer measurement bandwidth (5–100 mHz), where non-gravitational forces must be counteracted down to micronewton, and spacecraft attitude must track the local orbital reference frame with micro-radian accuracy. DFAC aims to enable the gravity gradiometer to operate so as to determine the Earth's gravity field especially in the so-called measurement bandwidth (5–100 mHz), making use of ion and micro-thruster actuators. The DFAC unit has been designed entirely on a simplified discrete-time model (Embedded Model) derived from the fine dynamics of the spacecraft and its environment; the relevant control algorithms are implemented and tuned around the Embedded Model, which is the core of the control unit. The DFAC has been tested against uncertainties in spacecraft and environment and its code has been the preliminary model for final code development. The DFAC assumes an all-propulsion command authority, partly abandoned by the actual GOCE control system because of electric micro-propulsion not being fully developed. Since all-propulsion authority is expected to be imperative for future scientific and observation missions, design and simulated results are believed to be of interest to the space community.  相似文献   

18.
The numerical simulation and the measurement of electromagnetic shielding at microwave frequencies of thermal protection system for hypersonic vehicles is presented using nested reverberation chamber. An example of a possible thermal protection system for a re-entry vehicle is presented. This system based on carbon material is electromagnetically characterized. The characterization takes into account not only the materials but also the final assembly configuration of the thermal protection system. The frequency range is 2–8 GHz. The results of measurements and simulations show that the microwave shielding effectiveness of carbon materials is above 60 dB for a single tile and that the tile inter-distance is able to downgrade the shielding effectiveness on the average to about 40 dB.  相似文献   

19.
《Acta Astronautica》2010,66(11-12):1772-1782
Science return and high bandwidth communications are one of the key issues to support the foreseen endeavours on next generation missions [J.L. Gerner, Telemetry, tracking and command of satellites—a perspective, TT&C 2004 Workshop, 7–9 September 2004]. Interplanetary telecommunication systems are required that support the foreseen endeavours. Given the same constraints in terms of mass, power and volume a laser communications terminal can offer an increase in telemetry bandwidth over classical RF technology allowing for a variety of new options, specifically to missions that require large distances, such as to the Moon, to liberation points L1 and L2, ultimately aiming at deep space missions. An increase in telemetry data rate allows the mission to consider the processing of raw scientific data to take place on ground, making use of latest technology further developed during the cruise phase of the probe, rather than applying data pre-processing on-board the satellite. Enhanced sensing techniques that generate more science data return could be used and access to data during flight could be faster. Results of on-going activities will be presented, comprising PPM laser communications and advanced tracking concepts. An overview will be given of the system concept for an integrated RF-optical TT&C transponder. Results will be shown from hardware tests on communications performance in inter-island test campaigns.  相似文献   

20.
简要介绍了“风云二号”静止气象卫星的地面应用系统、主要包括指令控制与数据接收站、数据处理中心、卫星运行控制中心三大组成部分以及三者之间的信息流程,最后介绍了由该系统输出的气象产品。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号