首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This paper presents the orbital maneuver (OM) and keeping of FORMOSAT-2 (or FS2, Formosa Satellite #2) since its launch on 20 May 2004. The successful launch put FS2 in a sun-synchronous parking orbit with 729.94 km perigee and 743.31 apogee. Taiwan’s National Space Organization (NSPO) then spent 11 days to perform the first orbital maneuver (OM#1) and raised FS2 to its sun-synchronous circular mission orbit at 888.47 km altitude. Due to various kinds of disturbances, FS2’s orbit shifts gradually but constantly. Therefore, four times of OM had been performed for orbital keeping. Details of all 5 OMs are described.  相似文献   

2.
《Acta Astronautica》2010,66(11-12):1765-1771
The ESA SWARM mission will consist of three satellites that will measure the Earth magnetic field. The system calls for metre accuracy knowledge of the measurement locations. To achieve this a GPS receiver is used. At least four GPS signals are tracked to determine the code and carrier ranges, from which the position can be derived. The accuracy improves when using more GPS satellites and by averaging over many measurements. The latter is achieved in ground processing with a model-based orbit prediction, resulting in cm accuracy. The main error contributions in the processing are often measurement errors due to satellite multi-path effects. The multipath effects are characterized by measuring the antenna on a 1.5 m mock-up, representing the 9 m long satellite. In order to verify that the mock-up is representative, extensive electromagnetic simulations were made. The simulations included the antenna and the complete satellite and were then reduced to the antenna and a section of the satellite. The actual design of the antenna was performed with several levels of software. First, a fast bodies-of-revolution simulation found a geometry with the right coverage. Then, a finite element method simulation allowed us to match the antenna at two frequencies simultaneously.  相似文献   

3.
In extension to common applications such as groundtrack displays and antenna steering, the SGP4 orbit model is proposed for operational orbit determination in small satellite missions. SGP4 is an analytical orbit model for Low-Earth orbiting satellites that is widely used for the propagation of NORAD twoline elements. Twoline elements may hence be generated completely independent of NORAD. Their use as exclusive source of orbital information simplifies the operations concept and reduces mission costs through the extensive use of existing low-cost mission support software. Due to small computer resource requirements of 8–10kByte, the SGP4 model may also be applied for onboard orbit computations making use of e.g. a 80186 processor, thus ensuring full compatibility of ground-based and onboard operations. The proposed approach is particularly suited in combination with a space-borne GPS receiver, were the C/A-code navigation solutions are treated as measurements that are adjusted in a least-squares sense using the SGP4 model. As consequence, inherent drawbacks of the pure navigation solutions such as data gaps and scatter as well as limited velocity accuracy are avoided, while the operational navigation activities are kept at a minimum. The feasibility of the concept is illustrated based on real GPS navigation data from the TOPEX/Poseidon and the MIR space station with an inherent data quality of 50–100 m. It is shown that 3 hours of data within a 4 day period are sufficient to keep the position error within 4 km, that is considered sufficient for most applications.  相似文献   

4.
When Ariane 5 ECA development has been decided by Europe to increase Ariane 5 performance, the rule of 25 years in GTO orbit for the upper stage has been anticipated. This was 14 years ago and this rule was known to be satisfied with a perigee lower than 250 km. Even when lowering slightly Ariane 5 ECA performance, this maximum perigee altitude has been held and the whole Launch System has been developed under CNES responsibility with this GTO perigee. In the meantime, more precise calculations demonstrated that such a GTO perigee was giving for the ESCA a mean lifetime higher than 25 years. So studies are in progress inside CNES to decrease the perigee and re-enter inside the 25 years lifetime domain. This paper presents a CNES study to reduce the orbital lifetime of Ariane 5's upper stage that last in GTO after each commercial mission. Usually the aimed orbit has a perigee altitude of 250 km, an apogee altitude near to the geostationary position and an inclination between 2° and 7°. These conditions make stage's mean lifetime superior to 90 years. The CNES study is to expose the possibility to decrease this lifetime by reducing the perigee altitude of the final upper stage orbit through a passivation process optimised to produce orbit modification. It is shown that taking into account material and functional stage constraints the optimised passivation process is able to decrease the perigee by a few tenths of kilometres.  相似文献   

5.
The Active Magnetospheric Particle Tracer Explorers (AMPTE) program consists of three satellites which were launched on 16th August 1984. The scientific aim of the mission is to inject lithium and barium tracer ions inside and outside the Earth's magnetosphere and to detect and monitor these ions as they diffuse through the inner magnetosphere. The first of these three satellites, the U.S. Charge Composition Explorer (CCE) was launched into an elliptical orbit of apogee 8 Re. The other two satellites are the West German Ion Release Module (IRM) and the U.K. Subsatellite (UKS), both of which were launched on the same vehicle into a highly elliptical orbit of apogee 18 Re. At discreet intervals during the mission the IRM will release ions into the solar wind, and the movement of these ions will be monitored by the UKS. Depending on the particular scientific requirement, the UKS has to be positioned accurately at a given distance behind the IRM. Initially the UKS has to be located 100 km behind the IRM, and held there for ~9 months. It will then be moved a distance of ~1 Re behind the IRM. In order to manoeuvre the UKS around its orbit, a cold gas jet system is incorporated on the satellite, allowing impulses to be applied both along and perpendicular to the orbit velocity vector. The orbit control system also has to cater for relative orbit changes due to air drag at perigee, as the IRM and the UKS have different areamass ratios. This paper presents an account of the orbit control system implemented on the UKS, together with the mathematical approach adopted, and results from manoeuvres made in the first weeks of the mission.  相似文献   

6.
The solutions adopted for the disposal of the upper stages used to put in orbit the first satellites of the new European (Galileo) and Chinese (Beidou) navigation constellations were analyzed. The orbit evolution of the rocket bodies was modeled for 200 years, taking into account all relevant perturbations, and the chosen disposal options were evaluated in terms of their long-term consequences for the debris environment. The results obtained, when applicable, were also discussed in the context of the eccentricity instability problem, pointed out in previous studies. In addition, the long-term evolution of the fragments resulting from a Beidou rocket body breakup, and of simulated high area-to-mass ratio objects released in the disposal orbits of the first two Galileo upper stages, was investigated.Eight out of ten Beidou upper stages were found to have an orbital lifetime <25 years and the other two resulted in a dwell time of approximately 6 years below 2000 km. It was also found that the perigee heights of the two upper stages used to deploy the first Galileo test spacecraft will remain more than 169 km above the constellation nominal altitude, never crossing the existing or planned navigation systems. In spite of an inclination resonance possibly leading to the exponential growth of the eccentricity over several decades, the optimal choice of the disposal orbital elements was able to prevent such an outcome, by maintaining the orbit nearly circular. Therefore, the upper stage disposal strategies used so far for Beidou and Galileo have generally been quite successful in averting the long-term interference of such rocket bodies with the navigation constellations, provided that accidental breakups are prevented.  相似文献   

7.
《Acta Astronautica》2010,66(11-12):1571-1581
A dual one-way ranging (DOWR) system provides very high accuracy range measurements between two satellites. The GRACE satellite mission implements the DOWR, called KBR (K-band ranging), to measure very small inter-satellite range change in order to map the Earth gravity field. The flight performance of the KBR is analyzed by using a hybrid software simulator that incorporates actual satellite orbit data into a comprehensive KBR simulator, which was earlier used for computing the GRACE baseline accuracy. Three types of experiments were performed. First is the comparison of the flight data with the simulated data in spectral domain. Second is the comparison of double differenced noise level. Third is the comparison of the range-rate difference with GPS clock estimates. The analysis shows a good agreement with the simulation model except some excessive high frequency noise, e.g. 10−4 m/√Hz at 0.1 Hz. The range-rate difference shows 0.003 cyc/s discrepancy with the clock estimates. These analyses are helpful to refine the DOWR simulation model and can be benefit to future DOWR instrument development.  相似文献   

8.
On 14 May 2009 the European Space Agency launched 2 space observatories: Herschel (with a 3.5 m mirror it is the largest space telescope ever) will collect long-wavelength infrared radiation and will be the only space observatory to cover the spectral range from far-infrared to sub-millimetre wavelengths, and Planck will look back at the dawn of time, close to the Big Bang, and will examine the Cosmic Microwave Background (CMB) radiation to a sensitivity, angular resolution and frequency range never achieved before. This paper will present the Flight Dynamics, mission analysis challenges and flight results from the first 3 months of these missions.Both satellites were launched on the same Ariane 5 and travelled to the L2 Lagrange point of the sun–earth system 1.5 million km from the earth in the opposite direction of the sun. There they were injected to a quasi-halo orbit (Herschel) with the dimension of typically 750,000 km×450,000 km, and a Lissajous orbit (Planck) of 300,000 km×300,000 km.In order to reach these Lissajous orbits it is mandatory to perform large trajectory correction manoeuvres during the first days of the mission. Herschel had its main manoeuvres on the first day. Planck had to be navigated on the first day and by a mid-course correction manoeuvre, the L2 orbit insertion manoeuvre was planned on day 50. If these slots were missed, fuel penalties would rapidly increase.This posed a heavy load on the operations teams because both spacecrafts have to be thoroughly checked out and put into the correct modes of their attitude control systems during the first hours after launch.The sequence of events will be presented and explained and the orbit determination results as well as the manoeuvre planning will be emphasised.  相似文献   

9.
针对椭圆轨道卫星近/远地点的星下点对全球或特定纬度区域的访问问题,提出一种连续小推力下的对地覆盖控制策略。首先,推导了自然摄动对卫星拱线变化的影响,并探讨了进行小推力覆盖控制的必要性。然后,针对燃料消耗的优化问题,将控制方程展开成含傅里叶级数的形式,用以获得便于星上计算的解析形式的次优解,同时探讨了截取阶数与优化程度的关系。在进行拱线控制的同时,通过合理设置约束,对椭圆轨道的近地点高度进行保护,确保卫星安全运行。仿真结果表明,提出的方法能够以适当的燃料消耗代价实现椭圆轨道的近/远地点的全球覆盖控制或特定纬度区域的反复推扫,且控制力在可接受的范围内。  相似文献   

10.
The International Space University—Balloon Air traffic control Technology Experiment (I-BATE1) has flown on board two stratospheric balloons and has tracked nearby aircraft by receiving their Automatic Dependent Surveillance-Broadcast (ADS-B) transmissions. Air traffic worldwide is facing increasing congestion. It is predicted that daily European flight volumes will more than double by 2030 compared to 2009 volumes. ADS-B is an air traffic management system being used to mitigate air traffic congestion. Each aircraft is equipped with both a GPS receiver and an ADS-B transponder. The transponder transmits an equipped aircraft's unique identifier, position, heading, and velocity once per second. The ADS-B transmissions can then be received by ground stations for use in traditional air traffic management. Airspace not monitored by these ground stations or other traditional means remains uncontrolled and poorly monitored. A constellation of space-based ADS-B receivers could close these gaps and provide global air traffic monitoring. By flying an ADS-B receiver on a stratospheric balloon, I-BATE has served as a precursor to a constellation of ADS-B-equipped Earth-orbiting satellites. From the ~30 km balloon altitude, I-BATE tracked aircraft ranging up to 850 km. The experiment has served as a proof of concept for space-based air traffic management and supports a technology readiness level 6 of space-based ADS-B reception.  相似文献   

11.
This paper describes a carrier-phase differential GPS approach for real-time relative navigation of LEO satellites flying in formation with large separations. These applications are characterized indeed by a highly varying number of GPS satellites in common view and large ionospheric differential errors, which significantly impact relative navigation performance and robustness. To achieve high relative positioning accuracy a navigation algorithm is proposed which processes double-difference code and carrier measurements on two frequencies, to fully exploit the integer nature of the related ambiguities. Specifically, a closed-loop scheme is proposed in which fixed estimates of the baseline and integer ambiguities produced by means of a partial integer fixing step are fed back to an Extended Kalman Filter for improving the float estimate at successive time instants. The approach also benefits from the inclusion in the filter state of the differential ionospheric delay in terms of the Vertical Total Electron Content of each satellite. The navigation algorithm performance is tested on actual flight data from GRACE mission. Results demonstrate the effectiveness of the proposed approach in managing integer unknowns in conjunction with Extended Kalman Filtering, and that centimeter-level accuracy can be achieved in real-time also with large separations.  相似文献   

12.
高轨卫星导航接收机是实现高轨航天器自主定轨的核心设备。为在地面测试阶段对高轨卫星导航接收机进行充分高效的验证,亟需设计基于高轨卫星导航接收机的地面测试系统。设计了一种基于高轨卫星导航接收机的自动化地面测试系统,主要创新点如下:第一,本系统可对高轨卫星导航接收机实际在轨状态下接收到的导航星座信号进行仿真;第二,具有模拟包含北斗三号等多导航卫星星座信号的功能;第三,本系统充分考虑自动化、通用化与一体化设计。提出的基于高轨卫星导航接收机的自动化地面测试系统能够在地面测试阶段对高轨卫星导航接收机进行充分验证,并充分考虑测试实施,从自动化、通用化、一体化方面提升测试效率,减少人为操作失误导致的质量问题,解决人工判读带来的误判漏判问题。  相似文献   

13.
基于单频GPS接收机的低轨卫星准实时定轨算法研究   总被引:2,自引:0,他引:2  
研究在不依赖于GPS差分基准站的情况下,利用单频GPS接收机对低轨卫星进行定轨的算法。文章先对影响卫星定轨的各种误差进行简要的分析,根据分析的结果对传统载波相位平滑伪距观测方程进行适当修正,然后,再利用修正的方程对伪距观测进行平滑,最后利用单点定位法进行轨道解算。仿真结果表明,在只需给定少数几个历元数据的情况下,利用单频接收机可以达到米级的定轨精度。  相似文献   

14.
This paper presents the enhancement in mission operations, the mission life state-of-health (SOH) trending analysis, and the post mission life plan of the FORMOSAT-2 (or FS2, Formosa satellite #2, was called ROCSAT-2, or RS2, Republic of China satellite #2, previously) during its five years mission life from 20 May 2004 to 20 May 2009. There are two payloads onboard FS2: a remote sensing instrument (RSI) with nadir ground sampling distance (GSD) of 2 m for panchromatic (PAN) and GSD of 8 m for multi-spectral (MS, 4 bands) as the primary payload, and an imager for sprite and upper atmospheric lightning (ISUAL) as the secondary payload. It was launched on 20 May 2004. The design life is 7 years while the mission life is 5 years. In other words, the end of mission life date of FS2 is 20 May 2009. Generally speaking, FS2 is still at very good condition in its SOH. Post mission life plan for FS2 consists of: the practice of orbit transfer for global coverage and better resolution, the development of gyroless attitude control, and the method for life extension. It is expected that the working life of FS2 can be extended 3–5 years.  相似文献   

15.
In order to carry out tasks of the RadioAstron mission, a high-apogee orbit was designed. On average, the period of its satellite’s orbit around the Earth is 8.5 days with evolution due to gravitational perturbations produced by the Moon and the Sun. The perigee and apogee of this orbit vary within the limits 7500–70000 km and 270000–333000 km, respectively. The basic evolution of the orbit represents a rotation of its plane around the line of apsides. Over 3 years, the plane normal to the orbit draws on the celestial sphere an oval with a semi-major axis of about 150° and semi-minor axis of about 45°.  相似文献   

16.
陈洁  汤国建 《上海航天》2005,22(1):24-30
针对中低轨道卫星,对平面内卫星半长轴α、偏心率e和近地点幅角w联合调整,以及平面外轨道倾角调整等进行了理论推导.用α,e,w联合修正法对初始轨道捕获、轨道保持和轨道倾角调整进行的仿真实验结果表明,用α,e,w同时修正可实现高精度的平面内轨道调整。另外,平面外倾角调整应尽可能在近地点和远地点完成,以使对升交点赤经的影响最小。  相似文献   

17.
This paper investigates how sensor and actuator errors are impacting formation control accuracy and propellant consumption of a two-satellite formation in a low Earth orbit. Realistic relative navigation errors are implemented, based on the results from the PRISMA mission, as well as realistic actuator uncertainty and actuator constraints. Two impulsive control methods are investigated. The first method is based on a controller that is implemented onboard PRISMA and the second method uses linear programming to arrive at a model predictive controller. The control methods are tested in a simulation environment and are subjected to orbital perturbations and realistic sensor errors and actuator errors. Both control methods are able to maintain the desired relative geometry of a projected circular orbit in the presence of the errors. The PRISMA control method demonstrates lower propellant consumption, while the model predictive controller shows better control accuracy. The results show that, based on the used scenario, sensor errors dominate both the formation control accuracy and propellant consumption. The versatility of the model predictive controller is demonstrated in a challenging formation control scenario including formation maintenance and formation reconfiguration tasks.  相似文献   

18.
The International Rosetta Mission, cornerstone of the European Space Agency Scientific Programme, was launched on 2nd March 2004 to its 10 years journey to comet Churyumov–Gerasimenko. Rosetta will reach the comet in summer 2014, orbit it for about 1.5 years down to distances of a few Kilometres and deliver the Lander Philae onto its surface. After its successful asteroid fly-by in September 2008, Rosetta came back to Earth, for the final gravity acceleration towards its longest heliocentric orbit, up to a distance of 5.3 AU. It is during this phase that Rosetta crossed for the second time the main asteroids belt and performed a close encounter with asteroid (21)Lutetia on the 10th of July 2010 at a distance of ca. 3160 km and a relative velocity of 15 km/s. The payload complement of the spacecraft was activated to perform highly valuable scientific observations. The approach phase to the celestial body required a careful and accurate optical navigation campaign that will prove to be useful also for the comet approach phase. The experience gained with first asteroid flyby in 2008 was fed back into the operations definition and preparation for this highly critical phase; this concerns in particular the operations of the navigation camera for the close-loop autonomous asteroid tracking and of the main scientific camera for high resolution imaging. It was shortly after the flyby that Rosetta became the solar-powered spacecraft to have flown furthest from the Sun (>2.72 AU). This paper presents the activities carried out and planned for the definition, preparation and implementation of the asteroid flyby mission operations, including the test campaign conducted to improve the performance of the spacecraft and payload compared to the previous flyby. The results of the flyby itself are presented, with the operations implemented, the achieved performance and the lessons learned.  相似文献   

19.
Recent studies have shown the feasibility of an Earth pole-sitter mission using low-thrust propulsion. This mission concept involves a spacecraft following the Earth's polar axis to have a continuous, hemispherical view of one of the Earth's poles. Such a view will enhance future Earth observation and telecommunications for high latitude and polar regions. To assess the accessibility of the pole-sitter orbit, this paper investigates optimum Earth pole-sitter transfers employing low-thrust propulsion. A launch from low Earth orbit (LEO) by a Soyuz Fregat upper stage is assumed after which solar electric propulsion is used to transfer the spacecraft to the pole-sitter orbit. The objective is to minimize the mass in LEO for a given spacecraft mass to be inserted into the pole-sitter orbit. The results are compared with a ballistic transfer that exploits manifold-like trajectories that wind onto the pole-sitter orbit. It is shown that, with respect to the ballistic case, low-thrust propulsion can achieve significant mass savings in excess of 200 kg for a pole-sitter spacecraft of 1000 kg upon insertion. To finally obtain a full low-thrust transfer from LEO up to the pole-sitter orbit, the Fregat launch is replaced by a low-thrust, minimum time spiral, which provides further mass savings, but at the cost of an increased time of flight.  相似文献   

20.
Antenna for precise orbit determination   总被引:2,自引:0,他引:2  
The ESA SWARM mission will consist of three satellites that will measure the Earth magnetic field. The system calls for metre accuracy knowledge of the measurement locations. To achieve this a GPS receiver is used. At least four GPS signals are tracked to determine the code and carrier ranges, from which the position can be derived. The accuracy improves when using more GPS satellites and by averaging over many measurements. The latter is achieved in ground processing with a model-based orbit prediction, resulting in cm accuracy. The main error contributions in the processing are often measurement errors due to satellite multi-path effects. The multipath effects are characterized by measuring the antenna on a 1.5 m mock-up, representing the 9 m long satellite. In order to verify that the mock-up is representative, extensive electromagnetic simulations were made. The simulations included the antenna and the complete satellite and were then reduced to the antenna and a section of the satellite. The actual design of the antenna was performed with several levels of software. First, a fast bodies-of-revolution simulation found a geometry with the right coverage. Then, a finite element method simulation allowed us to match the antenna at two frequencies simultaneously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号