首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
On 14 May 2009 the European Space Agency launched 2 space observatories: Herschel (with a 3.5 m mirror it is the largest space telescope ever) will collect long-wavelength infrared radiation and will be the only space observatory to cover the spectral range from far-infrared to sub-millimetre wavelengths, and Planck will look back at the dawn of time, close to the Big Bang, and will examine the Cosmic Microwave Background (CMB) radiation to a sensitivity, angular resolution and frequency range never achieved before. This paper will present the Flight Dynamics, mission analysis challenges and flight results from the first 3 months of these missions.Both satellites were launched on the same Ariane 5 and travelled to the L2 Lagrange point of the sun–earth system 1.5 million km from the earth in the opposite direction of the sun. There they were injected to a quasi-halo orbit (Herschel) with the dimension of typically 750,000 km×450,000 km, and a Lissajous orbit (Planck) of 300,000 km×300,000 km.In order to reach these Lissajous orbits it is mandatory to perform large trajectory correction manoeuvres during the first days of the mission. Herschel had its main manoeuvres on the first day. Planck had to be navigated on the first day and by a mid-course correction manoeuvre, the L2 orbit insertion manoeuvre was planned on day 50. If these slots were missed, fuel penalties would rapidly increase.This posed a heavy load on the operations teams because both spacecrafts have to be thoroughly checked out and put into the correct modes of their attitude control systems during the first hours after launch.The sequence of events will be presented and explained and the orbit determination results as well as the manoeuvre planning will be emphasised.  相似文献   

2.
A spacecraft capable of producing higher-than-natural electrostatic charges may achieve propellantless orbital maneuvering via the Lorentz-force interaction with a planetary magnetic field. Development of maneuver strategies for these propellantless vehicles is complicated by the fact that the perturbative Lorentz force acts along only a single line of action at any instant. Relative-motion dynamical models are developed that lead to approximate analytical solutions for the motion of charged spacecraft subject to the Lorentz force. These solutions indicate that the principal effects of the Lorentz force on a spacecraft in a circular orbit are to change the intrack position and to change the orbit plane. A rendezvous example is presented in which a spacecraft with a specific charge of ?3.81 × 10?4 C/kg reaches a target vehicle initially 10 km away (on the same equatorial low-Earth orbit) in 1 day. Fly-around maneuvers may be achieved in low-Earth orbit with specific charges on the order of 0.001 C/kg.  相似文献   

3.
The history of the deployment of nuclear reactors in Earth orbits is reviewed with emphases on lessons learned and the operation and safety experiences. The former Soviet Union's “BUK” power systems, with SiGe thermoelectric conversion and fast neutron energy spectrum reactors, powered a total of 31 Radar Ocean Reconnaissance Satellites (RORSATs) from 1970 to 1988 in 260 km orbit. Two of the former Soviet Union's TOPAZ reactors, with in-core thermionic conversion and epithermal neutron energy spectrum, powered two Cosmos missions launched in 1987 in ~800 km orbit. The US’ SNAP-10A system, with SiGe energy conversion and a thermal neutron energy spectrum reactor, was launched in 1965 in 1300 km orbit. The three reactor systems used liquid NaK-78 coolant, stainless steel structure and highly enriched uranium fuel (90–96 wt%) and operated at a reactor exit temperature of 833–973 K. The BUK reactors used U-Mo fuel rods, TOPAZ used UO2 fuel rods and four ZrH moderator disks, and the SNAP-10A used moderated U-ZrH fuel rods. These low power space reactor systems were designed for short missions (~0.5 kWe and ~1 year for SNAP-10A, <3.0 kWe and <6 months for BUK, and ~5.5 kWe and up to 1 year for TOPAZ). The deactivated BUK reactors at the end of mission, which varied in duration from a few hours to ~4.5 months, were boosted into ~800 km storage orbit with a decay life of more than 600 year. The ejection of the last 16 BUK reactor fuel cores caused significant contamination of Earth orbits with NaK droplets that varied in sizes from a few microns to 5 cm. Power systems to enhance or enable future interplanetary exploration, in-situ resources utilization on Mars and the Moon, and civilian missions in 1000–3000 km orbits would generate significantly more power of 10's to 100's kWe for 5–10 years, or even longer. A number of design options to enhance the operation reliability and safety of these high power space reactor power systems are presented and discussed.  相似文献   

4.
Collisions among existing Low Earth Orbit (LEO) debris are now a main source of new debris, threatening future use of LEO space. Due to their greater number, small (1–10 cm) debris are the main threat, while large (>10 cm) objects are the main source of new debris. Flying up and interacting with each large object is inefficient due to the energy cost of orbit plane changes, and quite expensive per object removed. Strategically, it is imperative to remove both small and large debris. Laser-Orbital-Debris-Removal (LODR), is the only solution that can address both large and small debris. In this paper, we briefly review ground-based LODR, and discuss how a polar location can dramatically increase its effectiveness for the important class of sun-synchronous orbit (SSO) objects. With 20% clear weather, a laser-optical system at either pole could lower the 8-ton ENVISAT by 40 km in about 8 weeks, reducing the hazard it represents by a factor of four. We also discuss the advantages and disadvantages of a space-based LODR system. We estimate cost per object removed for these systems. International cooperation is essential for designing, building and operating any such system.  相似文献   

5.
In this paper we calculate the effect of atmospheric dust on the orbital elements of a satellite. Dust storms that originate in the Martian surface may evolve into global storms in the atmosphere that can last for months can affect low orbiter and lander missions. We model the dust as a velocity-square depended drag force acting on a satellite and we derive an appropriate disturbing function that accounts for the effect of dust on the orbit, using a Lagrangean formulation. A first-order perturbation solution of Lagrange's planetary equations of motion indicates that for a local dust storm cloud that has a possible density of 8.323×10−10 kg m−3 at an altitude of 100 km affects the orbital semimajor axis of a 1000 kg satellite up −0.142 m day−1. Regional dust storms of the same density may affect the semimajor axis up to of −0.418 m day−1. Other orbital elements are also affected but to a lesser extent.  相似文献   

6.
This paper presents the enhancement in mission operations, the mission life state-of-health (SOH) trending analysis, and the post mission life plan of the FORMOSAT-2 (or FS2, Formosa satellite #2, was called ROCSAT-2, or RS2, Republic of China satellite #2, previously) during its five years mission life from 20 May 2004 to 20 May 2009. There are two payloads onboard FS2: a remote sensing instrument (RSI) with nadir ground sampling distance (GSD) of 2 m for panchromatic (PAN) and GSD of 8 m for multi-spectral (MS, 4 bands) as the primary payload, and an imager for sprite and upper atmospheric lightning (ISUAL) as the secondary payload. It was launched on 20 May 2004. The design life is 7 years while the mission life is 5 years. In other words, the end of mission life date of FS2 is 20 May 2009. Generally speaking, FS2 is still at very good condition in its SOH. Post mission life plan for FS2 consists of: the practice of orbit transfer for global coverage and better resolution, the development of gyroless attitude control, and the method for life extension. It is expected that the working life of FS2 can be extended 3–5 years.  相似文献   

7.
The International Rosetta Mission, cornerstone of the European Space Agency Scientific Programme, was launched on 2nd March 2004 to its 10 years journey to comet Churyumov–Gerasimenko. Rosetta will reach the comet in summer 2014, orbit it for about 1.5 years down to distances of a few Kilometres and deliver the Lander Philae onto its surface. After its successful asteroid fly-by in September 2008, Rosetta came back to Earth, for the final gravity acceleration towards its longest heliocentric orbit, up to a distance of 5.3 AU. It is during this phase that Rosetta crossed for the second time the main asteroids belt and performed a close encounter with asteroid (21)Lutetia on the 10th of July 2010 at a distance of ca. 3160 km and a relative velocity of 15 km/s. The payload complement of the spacecraft was activated to perform highly valuable scientific observations. The approach phase to the celestial body required a careful and accurate optical navigation campaign that will prove to be useful also for the comet approach phase. The experience gained with first asteroid flyby in 2008 was fed back into the operations definition and preparation for this highly critical phase; this concerns in particular the operations of the navigation camera for the close-loop autonomous asteroid tracking and of the main scientific camera for high resolution imaging. It was shortly after the flyby that Rosetta became the solar-powered spacecraft to have flown furthest from the Sun (>2.72 AU). This paper presents the activities carried out and planned for the definition, preparation and implementation of the asteroid flyby mission operations, including the test campaign conducted to improve the performance of the spacecraft and payload compared to the previous flyby. The results of the flyby itself are presented, with the operations implemented, the achieved performance and the lessons learned.  相似文献   

8.
A new and innovative type of gridded ion thruster, the “Dual-Stage 4-Grid” or DS4G concept, has been proposed and its predicted high performance validated under an ESA research, development and test programme. The DS4G concept is able to operate at very high specific impulse and thrust density values well in excess of conventional 3-grid ion thrusters at the expense of a higher power-to-thrust ratio. This makes it a possible candidate for ambitious missions requiring very high delta-V capability and high power. Such missions include 100 kW-level multi-ton probes based on nuclear and solar electric propulsion (SEP) to distant Kuiper Belt Object and inner Oort cloud objects, and to the Local Interstellar medium. In this paper, the DS4G concept is introduced and its application to this mission class is investigated. Benefits of using the DS4G over conventional thrusters include reduced transfer time and increased payload mass, if suitably advanced lightweight power system technologies are developed.A mission-level optimisation is performed (launch, spacecraft system design and low-thrust trajectory combined) in order to find design solutions with minimum transfer time, maximum scientific payload mass, and to explore the influence of power system specific mass. It is found that the DS4G enables an 8-ton spacecraft with a payload mass of 400 kg, equipped with a 65 kW nuclear reactor with specific mass 25 kg/kW (e.g. Topaz-type with Brayton cycle conversion) to reach 200 AU in 23 years after an Earth escape launch by Ariane 5. In this scenario, the optimum specific impulse for the mission is over 10,000 s, which is well within the capabilities of a single 65 kW DS4G thruster. It is also found that an interstellar probe mission to 200 AU could be accomplished in 25 years using a “medium-term” SEP system with a lightweight 155 kW solar array (2 kg/kW specific mass) and thruster PPU (3.7 kg/kW) and an Earth escape launch on Ariane 5. In this case, the optimum specific impulse is lower at 3500 s which is well within conventional gridded ion thruster capability.  相似文献   

9.
The suborbital flight is a kind of flight, which reaches the space and then comes back to ground without completing one orbital revolution. The atmospheric thermosphere extends from 85 km to 600 km in altitude. Therefore, the suborbital and low-thermospheric experiments to be performed at altitude below 300 km can be combined using the sounding rocket. These experiments include rocket staging, fairing separation, ultrasonic flight, reentry, aerobrake and recovery test, ultraviolet and ionization observations, ozone measurement, etc. The advent of Taiwan's sub-orbital and thermospheric experiments project can be traced back to 1997. This is the year Taiwan's National Space Organization (NSPO) was assigned to be responsible for procuring the sounding rocket for applications in science experiments and space technology research effort. From 1997 to 2010, 8 launches have been completed including one experimental hybrid rocket. All onboard instruments and sensors for sub-orbital and low-thermospheric experiments are developed and integrated by the domestic universities. More launches have been planned in the future. Opportunities for international cooperation in developing new instruments and payloads for future experiments will be possible.  相似文献   

10.
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, launched in August 2004 under NASA's Discovery Program, was inserted into orbit about the planet Mercury in March 2011. MESSENGER's three flybys of Mercury in 2008–2009 marked the first spacecraft visits to the innermost planet since the Mariner 10 flybys in 1974–1975. The unprecedented orbital operations are yielding new insights into the nature and evolution of Mercury. The scientific questions that frame the MESSENGER mission led to the mission measurement objectives to be achieved by the seven payload instruments and the radio science experiment. Interweaving the full set of required orbital observations in a manner that maximizes the opportunity to satisfy all mission objectives and yet meet stringent spacecraft pointing and thermal constraints was a complex optimization problem that was solved with a software tool that simulates science observations and tracks progress toward meeting each objective. The final orbital observation plan, the outcome of that optimization process, meets all mission objectives. MESSENGER's Mercury Dual Imaging System is acquiring a global monochromatic image mosaic at better than 90% coverage and at least 250 m average resolution, a global color image mosaic at better than 90% coverage and at least 1 km average resolution, and global stereo imaging at better than 80% coverage and at least 250 m average resolution. Higher-resolution images are also being acquired of targeted areas. The elemental remote sensing instruments, including the Gamma-Ray and Neutron Spectrometer and the X-Ray Spectrometer, are being operated nearly continuously and will establish the average surface abundances of most major elements. The Visible and Infrared Spectrograph channel of MESSENGER's Mercury Atmospheric and Surface Composition Spectrometer is acquiring a global map of spectral reflectance from 300 to 1450 nm wavelength at a range of incidence and emission angles. Targeted areas have been selected for spectral coverage into the ultraviolet with the Ultraviolet and Visible Spectrometer (UVVS). MESSENGER's Mercury Laser Altimeter is acquiring topographic profiles when the slant range to Mercury's surface is less than 1800 km, encompassing latitudes from 20°S to the north pole. Topography over the remainder of the southern hemisphere will be derived from stereo imaging, radio occultations, and limb profiles. MESSENGER's radio science experiment is determining Mercury's gravity field from Doppler signals acquired during frequent downlinks. MESSENGER's Magnetometer is measuring the vector magnetic field both within Mercury's magnetosphere and in Mercury's solar wind environment at an instrument sampling rate of up to 20 samples/s. The UVVS is determining the three-dimensional, time-dependent distribution of Mercury's exospheric neutral and ionic species via their emission lines. During each spacecraft orbit, the Energetic Particle Spectrometer measures energetic electrons and ions, and the Fast Imaging Plasma Spectrometer measures the energies and mass per charge of thermal plasma components, both within Mercury's magnetosphere and in Mercury's solar-wind environment. The primary mission observation sequence will continue for one Earth year, until March 2012. An extended mission, currently under discussion with NASA, would add a second year of orbital observations targeting a set of focused follow-on questions that build on observations to date and take advantage of the more active Sun expected during 2012–2013. MESSENGER's total primary mission cost, projected at $446 M in real-year dollars, is comparable to that of Mariner 10 after adjustment for inflation.  相似文献   

11.
The solutions adopted for the disposal of the upper stages used to put in orbit the first satellites of the new European (Galileo) and Chinese (Beidou) navigation constellations were analyzed. The orbit evolution of the rocket bodies was modeled for 200 years, taking into account all relevant perturbations, and the chosen disposal options were evaluated in terms of their long-term consequences for the debris environment. The results obtained, when applicable, were also discussed in the context of the eccentricity instability problem, pointed out in previous studies. In addition, the long-term evolution of the fragments resulting from a Beidou rocket body breakup, and of simulated high area-to-mass ratio objects released in the disposal orbits of the first two Galileo upper stages, was investigated.Eight out of ten Beidou upper stages were found to have an orbital lifetime <25 years and the other two resulted in a dwell time of approximately 6 years below 2000 km. It was also found that the perigee heights of the two upper stages used to deploy the first Galileo test spacecraft will remain more than 169 km above the constellation nominal altitude, never crossing the existing or planned navigation systems. In spite of an inclination resonance possibly leading to the exponential growth of the eccentricity over several decades, the optimal choice of the disposal orbital elements was able to prevent such an outcome, by maintaining the orbit nearly circular. Therefore, the upper stage disposal strategies used so far for Beidou and Galileo have generally been quite successful in averting the long-term interference of such rocket bodies with the navigation constellations, provided that accidental breakups are prevented.  相似文献   

12.
《Acta Astronautica》2007,60(8-9):752-762
A study of the evolution and optical detectability of a fragmentation debris cloud in geosynchronous orbit has been carried out. The 1998 NASA breakup model has been used to generate orbit data for 95 fragments larger than 10 cm size from a 1000 kg satellite. The orbital evolution of these fragments is studied using a precision numerical propagator, employing a high-fidelity force model. Although the fragments rapidly disperse throughout the geostationary arc, they remain localised in right ascension of ascending node and inclination, and are driven along a narrow inertial corridor by luni-solar perturbations. The ESA PROOF software is used to study the detectability of the fragments using a 1- and 0.5-m telescope design. The 1-m telescope can detect 82% of the fragments (down to 13 cm in size) whilst the 0.5-m telescope can detect 39% of the fragments (down to 30 cm size). Due to the large along-track spread of the fragments, a time limit of 1-month post-breakup can be established for a space surveillance system to catalogue the breakup fragments. After this time the angular separation is such that the fragments disperse into the background population, and are no longer distinguishable as originating from a common breakup event.  相似文献   

13.
Recent studies have shown the feasibility of an Earth pole-sitter mission using low-thrust propulsion. This mission concept involves a spacecraft following the Earth's polar axis to have a continuous, hemispherical view of one of the Earth's poles. Such a view will enhance future Earth observation and telecommunications for high latitude and polar regions. To assess the accessibility of the pole-sitter orbit, this paper investigates optimum Earth pole-sitter transfers employing low-thrust propulsion. A launch from low Earth orbit (LEO) by a Soyuz Fregat upper stage is assumed after which solar electric propulsion is used to transfer the spacecraft to the pole-sitter orbit. The objective is to minimize the mass in LEO for a given spacecraft mass to be inserted into the pole-sitter orbit. The results are compared with a ballistic transfer that exploits manifold-like trajectories that wind onto the pole-sitter orbit. It is shown that, with respect to the ballistic case, low-thrust propulsion can achieve significant mass savings in excess of 200 kg for a pole-sitter spacecraft of 1000 kg upon insertion. To finally obtain a full low-thrust transfer from LEO up to the pole-sitter orbit, the Fregat launch is replaced by a low-thrust, minimum time spiral, which provides further mass savings, but at the cost of an increased time of flight.  相似文献   

14.
In 2012 we celebrate the 70th anniversary of the first successful rocket launch that reached a height of 84.5 km and had a speed of 4.824 km/h (5x sonic speed). This rocket flew 190 km to the target location. One of the masterminds of this launch was Walter Thiel, a German chemist and rocket engineer. Thiel was highly talented, during his education from primary school until diploma exams he always received a grade of A in his exams. He was called “the student with the 7 A grades”. In 1934 Thiel became Dr.-Ing. (chem.), with the highest possible honor (summa cum laude), when he was only 24 years old. He started to work for the rocket development department at Humboldt University, Berlin. Walter Dornberger asked him to leave the university research department and become head of rocket propulsion development in his team in Kummersdorf, near Berlin. Thiel's groundbreaking ideas for the rocket engine would lead to a significant reduction in material, weight and work processes, as well as a shortening in the length of the engine itself. Thiel and his team also defined the fuel itself and the best ratio of mixture between ethanol and liquid oxygen for the engine. In 1940 the propulsion team moved from Kummersdorf to Peenemünde after the launch sites were completed there. Thiel became deputy of Wernher von Braun at the R&D units. One of Thiel's team members was Konrad Dannenberg, who later became famous in the development of the Saturn program. On the night from August 17 to August 18, 1943, Thiel and his family (wife and two children) were killed during a Royal Air Force bombing raid (Operation Hydra). The Moon crater “Thiel” on the far side of the Moon is named after Walter Thiel. The research results of Walter Thiel had a strong impact on the United States' rocket program as well as the Russian rocket development program.  相似文献   

15.
A series of 66 hypervelocity impact experiments have been performed to assess the potential of various materials (aluminium, titanium, copper, stainless steel, nickel, nickel/chromium, reticulated vitreous carbon, silver, ceramic, aramid, ceramic glass, and carbon fibre) and structures (monolithic plates, open-cell foam, flexible fabrics, rigid meshes) for micrometeoroid and orbital debris (MMOD) shielding. Arranged in various single-, double-, and triple-bumper configurations, screening tests were performed with 0.3175 cm diameter Al2017-T4 spherical projectiles at nominally 6.8 km/s and normal incidence. The top performing shields were identified through target damage assessments and their respective weight. The top performing candidate shield at the screening test condition was found to be a double-bumper configuration with a 0.25 mm thick Al3003 outer bumper, 6.35 mm thick 40 PPI aluminium foam inner bumper, and 1.016 mm thick Al2024-T3 rear wall (equal spacing between bumpers and rear wall). In general, double-bumper candidates with aluminium plate outer bumpers and foam inner bumpers were consistently found to be amongst the top performers. For this impact condition, potential weight savings of at least 47% over conventional all-aluminium Whipple shields are possible by utilizing the investigated materials and structures. The results of this study identify materials and structures of interest for further, more in-depth, impact investigations.  相似文献   

16.
This paper highlights the design, qualification and mission performance of the tether deployer system on the second Young Engineers’ Satellite (YES2), that featured a tethered momentum transfer. The deployer is designed with a broad range of near-term tether applications in mind. The system contains the tether, including features to enhance safety and wound up in controlled manner onto a spool core, optical deployment sensors, a “barberpole” friction brake controlled by a stepper motor and a triple tether cutter system. To initiate the deployment a spring-based ejection system was developed, and to apply accurate momentum transfer a timer and release system is present on the subsatellite side. A small, 6 kg re-entry capsule was developed as subsatellite. On September 25th, 2007, YES2 deployed a 32 km tether in orbit and gathered a wealth of data. Confidence is gained from the mission results for use of the deployer in future missions.  相似文献   

17.
《Acta Astronautica》2013,82(2):635-644
The Inner Formation Flying System (IFFS) consisting of an outer satellite and an inner satellite which is a solid sphere proof mass freely flying in the shield cavity can construct a pure gravity orbit to precisely measure the earth gravity field. The gravitational attraction on the inner satellite due to the outer satellite is a significant disturbance source to the pure gravity orbit and is required to be limited to 10−11 m s−2 order. However, the gravitational disturbance force was on 10−9 m s−2 order actually and must be reduced by dedicated compensation mass blocks. The region of relative motion of the inner satellite about its nominal position is within 1 cm in dimension, which raises the complexity of the compensation blocks design. The iterative design strategy of the compensation blocks based on reducing the gravitational attraction at the nominal position of the inner satellite is presented, aiming to guarantee the gravitational force in the relative motion region within requirements after the compensation. The compensation blocks are designed according to the current status of IFFS, and the gravitational disturbance force in the region is reduced to 10−11 ms−2 order with minimized adding mass.  相似文献   

18.
An analysis is performed on four typical materials (aluminum, liquid hydrogen, polyethylene, and water) to assess their impact on the length of time an astronaut can stay in deep space and not exceed a design basis radiation exposure of 150 mSv. A large number of heavy lift launches of pure shielding mass are needed to enable long duration, deep space missions to keep astronauts at or below the exposure value with shielding provided by the vehicle. Therefore, vehicle mass using the assumptions in the paper cannot be the sole shielding mechanism for long duration, deep space missions. As an example, to enable the Mars Design Reference Mission 5.0 with a 400 day transit to and from Mars, not including the 500 day stay on the surface, a minimum of 24 heavy lift launches of polyethylene at 89,375 lbm (40.54 tonnes) each are needed for the 1977 galactic cosmic ray environment. With the assumptions used in this paper, a single heavy lift launch of water or polyethylene can protect astronauts for a 130 day mission before exceeding the exposure value. Liquid hydrogen can only protect the astronauts for 160 days. Even a single launch of pure shielding material cannot protect an astronaut in deep space for more than 180 days using the assumptions adopted in the analysis. It is shown that liquid hydrogen is not the best shielding material for the same mass as polyethylene for missions that last longer than 225 days.  相似文献   

19.
This paper contemplates the efforts and developments in the field of sounding rockets carried out in Spain from the decade of the 1960s to the early 1990s when the use of such vehicles was abandoned worldwide.The initial sounding rocket planning within the National Space Research Programs around 1964 (when Spain joined ESRO) is presented.The status of the rocket technology in Spain in 1964 is analysed, reviewing the main technology gaps and the way they were filled to make the planned developments possible.Three Spanish sounding rockets are presented: the INTA-255 (150 km apogee with formative objectives, first launched in 1969), the INTA-300 (300 km apogee with high characteristics and commercial capabilities, first launched in 1974) and the INTA-100 (115 km apogee being finally a totally national product, first launched in 1980).Some guided rocket vehicle projects which were based, on some way, on the previous sounding rockets activities are also mentioned in this paper.  相似文献   

20.
Long-term sensitivity of human cells to reduced gravity has been supposed since the first Apollo missions and was demonstrated during several space missions in the past. However, little information is available on primary and rapid gravi-responsive elements in mammalian cells. In search of rapid-responsive molecular alterations in mammalian cells, short-term microgravity provided by parabolic flight maneuvers is an ideal way to elucidate such initial and primary effects. Modern biomedical research at the cellular and molecular level requires frequent repetition of experiments that are usually performed in sequences of experiments and analyses. Therefore, a research platform on Earth providing frequent, easy and repeated access to real microgravity for cell culture experiments is strongly desired. For this reason, we developed a research platform onboard the military fighter jet aircraft Northrop F-5E “Tiger II”. The experimental system consists of a programmable and automatically operated system composed of six individual experiment modules, placed in the front compartment, which work completely independent of the aircraft systems. Signal transduction pathways in cultured human cells can be investigated after the addition of an activator solution at the onset of microgravity and a fixative or lysis buffer after termination of microgravity. Before the beginning of a regular military training flight, a parabolic maneuver was executed. After a 1 g control phase, the parabolic maneuver starts at 13,000 ft and at Mach 0.99 airspeed, where a 22 s climb with an acceleration of 2.5g is initiated, following a free-fall ballistic Keplerian trajectory lasting 45 s with an apogee of 27,000 ft at Mach 0.4 airspeed. Temperature, pressure and acceleration are monitored constantly during the entire flight. Cells and activator solutions are kept at 37 °C during the entire experiment until the fixative has been added. The parabolic flight profile provides up to 45 s of microgravity at a quality of 0.05g in all axes. Access time is 30 min before take-off; retrieval time is 30 min after landing. We conclude that using military fighter jets for microgravity research is a valuable tool for frequent and repeated cell culture experiments and therefore for state-of-the art method of biomedical research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号