首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 77 毫秒
1.
ARSENE (Ariane, Radio-amateur, Satellite pour l'ENseignement de l'Espace) is a telecommunications satellite for Amateur Space Service. Its main feature is that more than 100 students from French engineering schools and universities have been working since 1979 for definition phase and satellite development. The highest IAF awards has been obtained by “ARSENE students” in Tokyo (1980) and Rome (1981). The French space agency, CNES and French aerospace industries are supporting the program. The European Space Agency offered to place ARSENE in orbit on the first Ariane mark IV launch late 1985.  相似文献   

2.
《Acta Astronautica》2009,64(11-12):1305-1311
FORMOSAT-2 is Taiwan's first remote sensing satellite (RSS). It was launched on 20 May 2004 with five-year mission life and a very unique mission orbit at 891 km altitude. This orbit gives FORMOSAT-2 the daily revisit feature and the capability of imaging the Arctic and Antarctic regions due to the high enough altitude. For more than three years, FORMOSAT-2 has performed outstanding jobs and its global effectiveness is evidenced in many fields such as public education in Taiwan, Earth science and ecological niche research, preservation of the world heritages, contribution to the International Charter: space and major disasters, observation of suspected North Korea and Iranian nuclear facilities, and scientific observation of the atmospheric transient luminous events (TLEs). In order to continue the provision of earth observation images from space, the National Space Organization (NSPO) of Taiwan started to work on the second RSS from 2005. This second RSS will also be Taiwan's first indigenous satellite. Both the bus platform and remote sensing instrument (RSI) shall be designed and manufactured by NSPO and the Instrument Technology Research Center (ITRC) under the supervision of the National Applied Research Laboratories (NARL). Its onboard computer (OBC) shall use Taiwan's indigenous LEON-3 central processing unit (CPU). In order to achieve cost effective design, the commercial off the shelf (COTS) components shall be widely used. NSPO shall impose the up-screening/qualification and validation/verification processes to ensure their normal functions for proper operations in the severe space environments.  相似文献   

3.
PRISMA (PRecursore IperSpettrale della Missione Applicativa) hyperspectral instrument is an advanced hyperspectral sensor including a panchromatic camera at medium resolution. The instrument is the focus of the new Earth observation mission that a consortium of Italian companies has started developing under contract of Italian Space Agency. Key features of the instrument are the very high requirement for signal-to-noise and the high quality of data that have to be provided. To meet these demanding figures the optical system has been based on a high transmittance optical system, including a single mirror telescope and two prism spectrometers based on an innovative concept to minimize number of optical elements, while high performance detectors have been chosen for the photon detection. To provide the required data quality for the entire mission lifetime an accurate calibration unit (radiometric and spectral) will be included in the instrument optomechanical assembly. The thermo-mechanical design of the instrument is based on innovative concepts, considering that the use of prism spectrometers implies a tight control of temperature variations to guarantee the stability of all instrument features once in orbit. The presented paper describes the concepts and design principle of the optomechanical assembly of the instrument, at the present status of development.  相似文献   

4.
PRISMA is a demonstration mission for formation-flying and on-orbit-servicing critical technologies that involves two spacecraft launched in low Earth orbit in June 2010 and still in operation. Funded by the Swedish National Space Board, PRISMA mission has been developed by OHB-Sweden (formerly Swedish Space Corporation) with important contributions from the German Aerospace Centre (DLR/GSOC), the French Space Agency (CNES), and the Technical University of Denmark (DTU). The paper focuses on the last CNES experiment achieved in September 2012 that was devoted to the preparation of future astrometry missions illustrated by the NEAT and µ-NEAT mission concepts. The experiment consisted of performing the type of formation maneuvers required to point the two-satellite axis to a celestial target and maintain it fixed during the observation period. Achieving inertial pointing for a LEO formation represented a new challenge given the numerous constraints from propellant usage to star tracker blinding. The paper presents the experiment objectives in relation with the NEAT/µ-NEAT mission concept, describes its main design features along with the guidance and control algorithms evolutions and discusses the results in terms of performances achieved during the two rehearsals.  相似文献   

5.
By using electrodynamic drag to greatly increase the orbital decay rate, an electrodynamic space tether can remove spent or dysfunctional spacecraft from low Earth orbit (LEO) rapidly and safely. Moreover, the low mass requirements of such tether devices make them highly advantageous compared to conventional rocket-based de-orbit systems. However, a tether system is much more vulnerable to space debris impacts than a typical spacecraft and its design must be proved to be safe up to a certain confidence level before being adopted for potential applications. To assess space debris related concerns, in March 2001 a new task (Action Item 19.1) on the “Potential Benefits and Risks of Using Electrodynamic Tethers for End-of-life De-orbit of LEO Spacecraft” was defined by the Inter-Agency Space Debris Coordination Committee (IADC). Two tests were proposed to compute the fatal impact rate of meteoroids and orbital debris on space tethers in circular orbits, at different altitudes and inclinations, as a function of the tether diameter to assess the survival probability of an electrodynamic tether system during typical de-orbiting missions. IADC members from three agencies, the Italian Space Agency (ASI), the Japan Aerospace Exploration Agency (JAXA) and the US National Aeronautics and Space Administration (NASA), participated in the study and different computational approaches were specifically developed within the framework of the IADC task. This paper summarizes the content of the IADC AI 19.1 Final Report. In particular, it introduces the potential benefits and risks of using tethers in space, it describes the assumptions made in the study plan, it compares and discusses the results obtained by ASI, JAXA and NASA for the two tests proposed. Some general conclusions and recommendations are finally extrapolated from this massive and intensive piece of research.  相似文献   

6.
The far side of the moon is a unique place for some scientific investigations. Chang'e 4 is a Chinese lunar far side landing exploration mission. Relay communication satellite, named as Queqiao, is an important and innovative part of Chang'e 4 mission. It can provide relay communication to the lander and the rover operating on the lunar far side to maintain their contacts with Earth. It was launched by LM-4 C launch vehicle at the Xichang Satellite Launch Center on May 21, 2018. After five precise orbit controls and a journey of more than 20 days, Queqiao inserted into final halo mission orbit around Earth-moon libration point 2, located about 65,000 km beyond the moon. It is the world's first communication satellite operating in that orbit. Up to now, Queqiao worked very well and provided reliable, continuous communication relay service for the lander and the rover to ensure the mission success of Chang'e 4 exploration mission. Via Queqiao, the lander and the rover were controlled to work by ground stations and obtained a great amount of scientific data. The mission overview, operation orbit selection, relay communication system design and flight profile were introduced in this article.  相似文献   

7.
The European Space Agency (ESA) has decided to carry out a fly-by mission to the comet Halley. The spacecraft will be launched by an ARIANE II and intercept the retrograde Halley orbit on 13 March, 1986. One group of experiments is designed to obtain data on size, mass and composition of the dust in the cometary tail. Because of the very high relative velocity during fly-by (69 km/s) laboratory experiments are necessary to develop and calibrate the experiments. These experiments are presently under way in the laboratory of the Lehrstuhl für Raumfahrttechnik of the Technische Universität München. First results have been obtained for both the Dust Impact Detection System (DIDSY) and the P?articulate Impact Analyzer (PIA). These results are compared with the theoretical models for hypervelocity impact craters. The agreement is good at impact velocities around 15 km/s.  相似文献   

8.
This paper addresses lunar escape maneuvers of the first Chinese Sun–Earth L2 libration point mission by the CHANG'E-2 satellite, which is also the world's first satellite to reach the L2 point from a lunar orbit. The lunar escape maneuvers are heavily constrained by the remaining propellant and the condition of telemetry, track and command, among others. First, these constraints are analyzed and summarized to design a target L2 Lissajous orbit and an initial transfer trajectory. Second, the maneuver mathematical models are studied. The multilevel maneuver schemes which consist of phasing maneuvers and a final lunar escape maneuver are designed for actual operations. Based on the scheme analysis and comparison, the 2-maneuver scheme with a 5.3-h-period phasing orbit is ultimately selected. Finally, the mission status based on the scheme is presented and the control operation results are discussed in detail. The methodology in this paper is especially beneficial and applicable to a future multi-mission instance in the deep space exploration.  相似文献   

9.
The authors present a new scientific space mission consisting of a satellite carrying a receiving- only SAR which receives the signal transmitted by the ENVISAT-1 SAR. The integration of ENVISAT-1 SAR and bistatic radar data offers an improved potentiality of surface classification, three-dimensional observation, and the opportunity of advanced scientific experiments in the field of bistatic scattering. The small satellite nominal orbit and the attitude manoeuvres are designed in order to maintain an adequate overlap between the two radar swaths along the whole orbit, taking into account the ENVISAT-1 attitude and pointing. A preliminary satellite design (2-year lifetime) is then performed to evaluate the orbit decay and to determine the appropriate orbit manoeuvres (every 4 days) to control the satellites relative phase. The numerical simulation shows that a spacecraft of about 584kg is able to meet the mission requirements.  相似文献   

10.
根据机构间空间碎片协调委员会(IADC)和欧空局(ESA)的空间碎片减缓要求,在建立航天发射、爆炸和碰撞模型,以及碎片演化机制的基础上,对常规发射(BAU)、禁止在轨爆炸(NO-EX)和全面减缓(MIT)三种空间碎片减缓策略条件下,对2000~2100年空间碎片环境进行了仿真计算。结果表明,禁止航天器在轨爆炸、对失效的卫星和火箭上面级实施离轨操作,以及在航天器的发射和运行中不产生或抛弃分离物等减缓措施是限制空间碎片数量增长的有效方法。  相似文献   

11.
An extensible on-board data handling software platform for pico satellites   总被引:1,自引:0,他引:1  
Marco Schmidt  Klaus Schilling   《Acta Astronautica》2008,63(11-12):1299-1304
Miniaturization techniques enable the realization of very small satellites with interesting capabilities in space science. The University of Würzburg contributed in the scope of the cubesat program with its own pico satellite UWE-1, which is in orbit since October 2005. Despite reliable and stable operation of the on-board data handling (OBDH) system during the UWE-1 mission, the successor UWE-2 will be equipped with a more sophisticated, modular and extensible OBDH system, which was designed to facilitate the further development of the UWE satellite platform. The OBDH system was designed for high reliability and stability, but with an easier extension capability. The modular structure of the new system thus supports potential transfer to other satellite platforms.  相似文献   

12.
《Acta Astronautica》2009,64(11-12):1299-1304
Miniaturization techniques enable the realization of very small satellites with interesting capabilities in space science. The University of Würzburg contributed in the scope of the cubesat program with its own pico satellite UWE-1, which is in orbit since October 2005. Despite reliable and stable operation of the on-board data handling (OBDH) system during the UWE-1 mission, the successor UWE-2 will be equipped with a more sophisticated, modular and extensible OBDH system, which was designed to facilitate the further development of the UWE satellite platform. The OBDH system was designed for high reliability and stability, but with an easier extension capability. The modular structure of the new system thus supports potential transfer to other satellite platforms.  相似文献   

13.
MICROSCOPE is a French space mission for testing the weak equivalence principle (WEP). The mission goal is the determination of the Eötvös parameter η with an accuracy of 10?15. The French space agency CNES is responsible for the satellite which is developed and produced within the Myriade series. The satellite's payload T-SAGE (Twin Space Accelerometer for Gravitation Experimentation) is developed and built by the French institute ONERA. It consists of two high-precision capacitive differential accelerometers. One accelerometer is used as reference sensor with two test masses of platinum, the science sensor contains a platinum and a titanium proof mass. The detection of the test mass movement and their control is done via a complex electrode system. As a member of the MICROSCOPE performance team, the German department ZARM will be involved in the data analysis of the MICROSCOPE mission. For this purpose, mission simulations and the preparation of the mission data evaluation in close cooperation with the French partners CNES, ONERA and OCA are realised. The development status of the simulation tool which will represent the complex spacecraft dynamics and all error sources in order to design and test data reduction procedures is presented and some features are discussed in detail.  相似文献   

14.
随着我国航天事业的蓬勃发展,运载火箭发射要求也呈现多样化。北斗卫星导航系统是我国自行研制的全球卫星导航系统,经历三步跨越式发展,目前已经全面建成。CZ-3A系列火箭承担了北斗工程全部发射任务,该工程对火箭倾斜同步转移轨道(IGTO)、中圆转移轨道(MTO)、地球同步转移轨道(GTO)新类型轨道要求。介绍了该类轨道特点,讨论了火箭发射方案、发射轨道设计及高空风双向补偿方法。实际飞行考核充分证明了发射轨道设计的正确性,设计方法确保了北斗工程全部发射任务取得圆满成功,为北斗工程顺利实施奠定了基础。  相似文献   

15.
K. Anflo  R. Mllerberg 《Acta Astronautica》2009,65(9-10):1238-1249
The concept of a storable liquid monopropellant blend for space applications based on ammonium dinitramide (ADN) was invented in 1997, within a co-operation between the Swedish Space Corporation (SSC) and the Swedish Defense Research Agency (FOI). The objective was to develop a propellant which has higher performance and is safer than hydrazine. The work has been performed under contract from the Swedish National Space Board and ESA. The progress of the development has been presented in several papers since 2000.ECAPS, a subsidiary of the Swedish Space Corporation was established in 2000 with the aim to develop and market the novel “high performance green propellant” (HPGP) technology for space applications. The new technology is based on several innovations and patents w.r.t. propellant formulation and thruster design, including a high temperature resistant catalyst and thrust chamber.The first flight demonstration of the HPGP propulsion system will be performed on PRISMA. PRISMA is an international technology demonstration program with Swedish Space Corporation as the Prime Contractor.This paper describes the performance, characteristics, design and verification of the HPGP propulsion system for PRISMA. Compatibility issues related to using a new propellant with COTS components is also discussed. The PRISMA mission includes two satellites in LEO orbit were the focus is on rendezvous and formation flying. One of the satellites will act as a “target” and the main spacecraft performs rendezvous and formation flying maneuvers, where the ECAPS HPGP propulsion system will provide delta-V capability.The PRISMA CDR was held in January 2007. Integration of the flight propulsion system is about to be finalized.The flight opportunity on PRISMA represents a unique opportunity to demonstrate the HPGP propulsion system in space, and thus take a significant step towards its use in future space applications. The launch of PRISMA scheduled to 2009.  相似文献   

16.
中国VLBI网火星快车卫星跟踪资料的定位归算   总被引:3,自引:0,他引:3  
我国已经启动了火星探测计划, 中国VLBI网(CVN)将肩负起相关探测器的测轨与定位任务  相似文献   

17.
Experimental observations of adaptation processes of the motor control system to altered gravity conditions can provide useful elements to the investigations on the mechanisms underlying motor control of human subject. The microgravity environment obtained on orbital flights represents a unique experimental condition for the monitoring of motor adaptation. The research in motor control exploits the changes caused by microgravity on the overall sensorimotor process, due to the impairment of the sensory systems whose function depends upon the presence of the gravity vector. Motor control in microgravity has been investigated during parabolic flights and short-term space missions, in particular for analysis of movement-posture co-ordination when equilibrium is no longer a constraint. Analysis of long-term adaptation would also be very interesting, calling for long-term body motion observations during the process of complete motor adaptation to the weightlessness environment. ELITE-S2 is an innovative facility for quantitative human movement analysis in weightless conditions onboard the International Space Station (ISS). ELITE-S2 is being developed by the Italian Space Agency, ASI is to be delivering the flight models to NASA to be included in an expressed rack in US Lab Module in February 2004. First mission is currently planned for summer 2004 (increment 10 ULF 2 ISS).  相似文献   

18.
The National Space Research Institute (INPE) is developing the first Brazilian Scientific Microsatellite (SACI-1) based on the vanguard technology and on the experience acquired through projects developed by Brazilian Space Program. The SACI-1 is a 750km polar orbit satellite. The spacecraft will combine spin stabilization with geomagnetic control and has a total mass of 60 kg. The overall dimensions are 640×470×470 mm. The SACI-1 satellite shall be launched together with CBERS (China-Brazil Earth Resource Satellite). Its platform is being designed for multiple mission applications. The Brazilian Academy of Sciences has selected four scientific payloads that characterize the mission. The scientific experiments are: ORCAS (Solar and Anomalous Cosmic Rays Observation in the Magnetosphere), PLASMEX (Study of Plasma Bubbles), FOTSAT (Airglow Photometer), and MAGNEX (Geomagnetic Experiment).  相似文献   

19.
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission used six planetary gravity assists in order to enable capture into orbit about Mercury. A key element of MESSENGER's successful trajectory was achieving the proper gravity assist from each planetary flyby. The criticality of the MESSENGER gravity assists levied tight accuracy requirements on the planetary-flyby targeting. Major errors could have precluded Mercury orbit insertion or required modifications to the trajectory that increased mission complexity, cost, and risk by requiring additional Mercury flybys and extending mission duration. Throughout the mission, MESSENGER modified its strategy for achieving accurate planetary flybys. By using solar sailing, the MESSENGER team was able to eliminate all of the flyby approach maneuvers without sacrificing flyby accuracy, thereby saving mission ΔV margin. The elimination of these approach maneuvers also markedly reduced mission risk, as these approach maneuvers were nominally planned during a time of heightened sensitivity to errors and precluded unique flyby science opportunities. The paradigm shift used by MESSENGER may be useful for other interplanetary missions, particularly if their trajectories require gravity assists in the inner solar system.  相似文献   

20.
利用理论分析、数值仿真与相图分析,论述了月球卫星冻结轨道与地球卫星冻结轨道的区别,分析结果表明,月球重力场存在较大异常,会引起月球卫星轨道发生较大漂移。月球冻结轨道在田谐项影响下,还存在中等周期的漂移。仅简单考虑带谐项系数,无法求得完美的月球冻结系数。月球重力场异常对绕月卫星的影响与地球相比存在很大区别。月球轨道卫星的长期运行与控制策略的设计,不能按照地球轨道卫星的传统方法。目前使用的月球引力模型精度较差,尽管基于这些不可靠的引力模型,可以得出很多有用结论,但对未来高精度的月球探测任务来说,还存在不足,需要在将来的月球探测任务中,探测高精度的月球重力场,以利于未来月球探测航天系统的任务分析与设计。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号