首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Residual biomass from hydroponic culture of sweetpotato [Ipomoea batatas (L.) Lam.] was degraded using natural bacterial soil isolates. Sweetpotato was grown for 120 days in hydroponic culture with a nutrient solution comprised of a ratio of 80% modified half Hoagland solution to 20% filtered effluent from an aerobic starch hydrolysis bioreactor. The phytotoxicity of the effluent was assayed with Waldmann's Green' lettuce (Lactuca sativa L.) and the ratio selected after a 60-day bioassay using sweetpotato plants propagated vegetatively from cuttings. Controlled environment chamber experiments were conducted to investigate the impact of filtrate from biological treatment of crop residue on growth and storage root production with plants grown in a modified half Hoagland solution. Incorporation of bioreactor effluent, reduced storage root yield of 'Georgia Jet' sweetpotato but the decrease was not statistically significant when compared with yield for plants cultured in a modified half Hoagland solution without filtrate. However, yield of 'TU-82-155' sweetpotato was significantly reduced when grown in a modified half Hoagland solution into which filtered effluent had been incorporated. Total biomass was significantly reduced for both sweetpotato cultivars when grown in bioreactor effluent. The leaf area and dry matter accumulation were significantly (P < 0.05) reduced for both cultivars when grown in solution culture containing 20% filtered effluent.  相似文献   

2.
Life support of crews in long-duration space missions for other planets will be highly dependent on amounts of food, atmospheric O2 and clean water produced by plants. Therefore, the space farming system with scheduling of crop production, obtaining high yields with a rapid turnover rate, converting atmospheric CO2 to O2 and purifying water should be established with employing suitable plant species and cultivars and precisely controlling environmental variables around plants grown at a high density in a limited space. In this study, we developed a new hydroponic method for producing tuberous roots and fresh edible leaves and stems of sweetpotato. In the first experiment, we examined the effects of water contents in the rooting substrate on growth and tuberous root development of sweetpotato. The rooting substrates made with rockwool slabs were inclined in a culture container and absorbed nutrient solution from the lower end of the slabs by capillary action. Tuberous roots developed on the lower surface of the rockwool slabs. The tuberous roots showed better growth and development at locations farther from the water surface on the rockwool slabs, which had lower water content. In the second experiment, three sweetpotato cultivars were cultured in a hydroponic system for five months from June to November under the sun light in Osaka, Japan as a fundamental study for establishing the space farming system. The cultivars employed were ‘Elegant summer’, ‘Kokei-14’ and ‘Beniazuma’. The hydroponic system mainly consisted of culture containers and rockwool slabs. Dry weights of tuberous roots developed in the aerial space between the rockwool slab and the nutrient solution filled at the bottom of the culture container were 0.34, 0.45 and 0.23 kg/plant and dry weights of the top portion (leaves, petioles and stems) were 0.42, 0.29 and 0.61 kg/plant for ‘Elegant summer’, ‘Kokei-14’ and ‘Beniazuma’, respectively. Young stems and leaves as well as tuberous roots of ‘Elegant summer’ are edible and palatable. Therefore ‘Elegant summer’ would be a promising crop to produce large amounts of food with high nutritional values in the present hydroponic system in space farming.  相似文献   

3.
Recent advances in technologies required for a "Salad Machine".   总被引:1,自引:0,他引:1  
Future long duration, manned space flight missions will require life support systems that minimize resupply requirements and ultimately approach self-sufficiency in space. Bioregenerative life support systems are a promising approach, but they are far from mature. Early in the development of the NASA Controlled Ecological Life Support System Program, the idea of onboard cultivation of salad-type vegetables for crew consumption was proposed as a first step away from the total reliance on resupply for food in space. Since that time, significant advances in space-based plant growth hardware have occurred, and considerable flight experience has been gained. This paper revisits the "Salad Machine" concept and describes recent developments in subsystem technologies for both plant root and shoot environments that are directly relevant to the development of such a facility.  相似文献   

4.
NASA research programs offer many opportunities for productive partnerships with investigators in other countries. While spacecraft projects are complex and very expensive, there are other, lower-cost partnerships that can yield important scientific results and offer excellent opportunities for building up new space and Earth science programs and for training new researchers.  相似文献   

5.
Effects of relative humidity, light intensity and photoperiod on growth of 'Ga Jet' and 'TI-155' sweetpotato cultivars, using the nutrient film technique (NFT), have been reported. In this study, the effect of ambient temperature regimes (constant 28 degrees C and diurnal 28:22 degrees C day:night) and different CO2 levels (ambient, 400, 1000 and 10000 microliters/L--400, 1000 and 10000 ppm) on growth of one or both of these cultivars in NFT are reported. For a 24-h photoperiod, no storage roots were produced for either cultivar in NFT when sweetpotato plants were grown at a constant temperature of 28 degrees C. For the same photoperiod, when a 28:22 degrees C diurnal temperature variation was used, there were still no storage roots for 'TI-155' but the cv. 'Ga Jet' produced 537 g/plant of storage roots. For both a 12-h and 24-h photoperiod, 'Ga Jet' storage root fresh and dry weight tended to be higher with a 28:22 degrees C diurnal temperature variation than with a constant 28 degrees C temperature regime. Preliminary results with both 'Ga Jet' and 'TI 155' cultivars indicate a distinctive diurnal stomatal response for sweetpotato grown in NFT under an ambient CO2 level. The stomatal conductance values observed for 'Ga Jet' at elevated CO2 levels indicated that the difference between the light- and dark-period conductance rates persisted at 400, 1000, and 10000 microliters/L.  相似文献   

6.
Currently light emitting diodes (LEDs) are considered to be most preferable source for space plant growth facilities. We performed a complex study of growth and photosynthesis in Chinese cabbage plants (Brassica chinensis L.) grown with continuous LED lighting based on red (650 nm) and blue (470 nm) LEDs with a red to blue photon ratio of 7:1. Plants grown with high-pressure sodium (HPS) lamps were used as a control. PPF levels used were about 100 μmol/(m2 s) (PPF 100) and nearly 400 μmol/(m2 s) (PPF 400). One group of plants was grown with PPF 100 and transferred to PPF 400 at the age of 12 days. Plants were studied at the age of 15 and 28 days (harvest age); some plants were left to naturally end their life cycle. We studied a number of parameters reflecting different stages of photosynthesis: photosynthetic pigment content; chlorophyll fluorescence parameters (photosystem II quantum yield, photochemical and non-photochemical chlorophyll fluorescence quenching); electron transport rate, proton gradient on thylakoid membranes (ΔpH), and photophosphorylation rate in isolated chloroplasts. We also tested parameters reflecting plant growth and productivity: shoot and root fresh and dry weight, sugar content and ascorbic acid content in shoots. Our results had shown that at PPF 100, plants grown with LEDs did not differ from control plants in shoot fresh weight, but showed substantial differences in photophosphorylation rate and sugar content. Differences observed in plants grown with PPF 100 become more pronounced in plants grown with PPF 400. Most parameters characterizing the plant photosynthetic performance, such as photosynthetic pigment content, electron transport rate, and ΔpH did not react strongly to light spectrum. Photophosphorylation rate differed strongly in plants grown with different spectrum and PPF level, but did not always reflect final plant yield. Results of the present work suggest that narrow-band LED lighting caused changes in Chinese cabbage plants on levels of the photosynthetic apparatus and the whole plant, concerning its development and adaptation to a varying PPF level.  相似文献   

7.
首次使用疏水型聚四氟乙烯微孔滤膜,利用其透气不透水的特性,密封晶体生长容器,采用恒温蒸发法进行晶体生长.溶剂通过蒸发离开生长容器后,被生长容器外的吸附剂吸附,使得溶液维持一定过饱和度,以实现单晶的连续生长.在此基础上研制出一套空间低温溶液晶体生长地基模拟装置.利用此装置进行了一系列地基模拟实验,获得一批高质量α-LiIO3单晶,证实了该生长装置的溶剂蒸发量和容器密封性能够满足空间低温溶液晶体生长需要,为未来空间低温溶液晶体生长实验奠定了基础.   相似文献   

8.
9.
10.
The 1967 treaty on the peaceful uses of outer space reflected both concerns associated with the unknown nature of the space environment and the desire of the world scientific community to preserve the pristine nature of celestial objects until such times as they could be studied in an effective manner. Since 1967, NASA has issued policy directives that have adopted the guidelines of COSPAR for protecting the planets from contamination by Earth organisms and for protecting the Earth from the unknown. This paper presents the current status of planetary protection (quarantine) policy within NASA, and a prospectus on how planetary protection and back contamination issues might be addressed in relation to future missions envisioned for development by NASA either independently, or in cooperation with the space agencies of other nations.  相似文献   

11.
Mars Sample Return (MSR) represents an important scientific goal in space exploration. Any sample return mission will be extremely challenging from a scientific, economic and technical standpoint. But equally testing, will be communicating with a public that may have a very different perception of the mission. A MSR mission will generate international publicity and it is vital that NASA acknowledge the nature and extent of public concern about the mission risks and, perhaps equally importantly, the public’s confidence in NASA’s ability to prepare for and manage these risks. This study investigated the level of trust in NASA in an Australian population sample, and whether this trust was dependent on demographic variables. Participants completed an online survey that explored their attitudes towards NASA and a MSR mission. The results suggested that people believe NASA will complete the mission successfully but have doubts as to whether NASA will be honest when communicating with the public. The most significant finding to emerge from this study was that confidence in NASA was significantly (p < 0.05) related to the respondent’s level of knowledge regarding the risks and benefits of MSR. These results have important implications for risk management and communication.  相似文献   

12.
Strawberry is a candidate crop for space that is rich in protective antioxidants and could also have psychological benefits as a component of crew diets during long-duration space habitation. Energy for electric lighting is a major input to a controlled-environment crop-production system for space habitation. Day-neutral strawberry cultivars were evaluated at several different photoperiods to determine minimum lighting requirements without limiting yield or negatively impacting fruit quality. The cultivars ‘Tribute’, ‘Seascape’, and ‘Fern’ were grown at 14, 17, or 20 h of light per day, and fruit yield was evaluated over a 31-week production period. This amounted to a difference of 2418 kWh m−2 in energy usage between the longest and shortest photoperiods. All cultivars produced similar total fresh weight of fruit regardless of photoperiod. Volunteer tasters rated organoleptic characteristics including sweetness, tartness, texture, and overall appeal as measures of fruit quality. Generally, organoleptic attributes were not affected by photoperiod, but these attributes were somewhat dependent upon cultivar and harvest time. Cultivars under different photoperiods varied in their production of fruit over time. ‘Seascape’ was the most consistent producer, typically with the largest, most palatable fruit. ‘Seascape’ plants subsequently were grown at 10-, 12-, or 14-h photoperiods over a treatment period of 33 weeks. Photoperiod again had no significant effect on total fruit weight, although there were periodic flushes of productivity. Fruit under all photoperiods had acceptable approval ratings. A large-fruited, day-neutral strawberry cultivar such as ‘Seascape’ remains productive under shortened photoperiods, allowing reductions in energy and crew labor while maintaining flexibility for mixed-cropping scenarios in space.  相似文献   

13.
Many challenges are presented by biological degradation in a bioregenerative Controlled Ecological Life Support System (CELSS) as envisioned by the U.S. National Aeronautics and Space Administration (NASA). In the studies conducted with biodegradative microorganism indigenous to sweetpotato fields, it was determined that a particle size of 75 microns and incubation temperature of 30 degrees C were optimal for degradation. The composition of the inedible biomass and characterization of plant nutrient solution indicated the presence of potential energy sources to drive microbial transformations of plant waste. Selected indigenous soil isolates with ligno-cellulolytic or sulfate-reducing ability were utilized in biological studies and demonstrated diversity in ability to reduce sulfate in solution and to utilize alternative carbon sources: a lignin analog--4-hydroxy, 3-methoxy cinnamic acid, cellulose, arabinose, glucose, sucrose, mannitol, galactose, ascorbic acid.  相似文献   

14.
空间序列图像中移动小目标检测与轨迹提取是空间目标监视、跟踪及编目的关键技术之一.为了及时有效地处理星载可见光相机输出的多维海量数据,提出了一种基于四邻域二值量化方法和改进概率Hough变换的目标检测及轨迹提取算法.相较于美国空间目标在轨检测(MTI,moving target indicator)算法,改进算法虚警噪声点及候选路径数目明显减少,计算复杂度降低,运行效率提高.实验结果表明,算法可有效检测序列图像中快速移动的弱小目标并提取其直线运动轨迹.  相似文献   

15.
This overview covers the basic microbial ecology of recirculating hydroponic solutions. Examples from NASA and Soviet CELSS tests and the commercial hydroponic industry will be used. The sources of microorganisms in nutrient solutions include air, water, seeds, plant containers and plumbing, biological vectors, and personnel. Microbial fates include growth, death, and emigration. Important microbial habitats within nutrient delivery systems are root surfaces, hardware surfaces (biofilms), and solution suspension. Numbers of bacteria on root surfaces usually exceed those from the other habitats by several orders of magnitude. Gram negative bacteria dominate the microflora with fungal counts usually much lower. Trends typically show a decrease in counts with increasing time unless stressed plants increase root exudates. Important microbial activities include carbon mineralization and nitrogen transformations. Important detrimental interactions include competition with plants, and human and plant pathogenesis.  相似文献   

16.
Considerable technological progress has been made in the development of controlled environment facilities for plant growth. Although not all of the technology used for terrestrial facilities is applicable to space-based plant growth facilities, the information resident in the commercial organizations that market these facilities can provide a significant resource for the development of the plant growing component of a CELSS. In 1985, NASA initiated an effort termed the Centers for the Commercial Development of Space (CCDS). This program endeavors to develop cooperative research and technology development programs with industrial companies that capitalize on the strengths of industry-university working relationships. One of the these CCDSs, the Wisconsin Center for Space Automation and Robotics (WCSAR), deals with developing automated plant growth facilities for space, in cooperation with several industrial partners. Concepts have been developed with industrial partners for the irradiation, water and nutrient delivery, nutrient composition control and automation and robotics subsystems of plant growing units. Space flight experiments are planned for validation of the concepts in a space environment.  相似文献   

17.
NASA is committed to exploring space while avoiding the biological contamination of other solar system bodies and protecting the Earth against potential harm from materials returned from space. NASA's planetary protection program evaluates missions (with external advice from the US National Research Council and others) and imposes particular constraints on individual missions to achieve these objectives. In 1997 the National Research Council's Space Studies Board published the report, Mars Sample Return: Issues and Recommendations, which reported advice to NASA on Mars sample return missions, complementing their 1992 report, The Biological Contamination of Mars Issues and Recommendations. Meanwhile, NASA has requested a new Space Studies Board study to address sample returns from bodies other than Mars. This study recognizes the variety of worlds that have been opened up to NASA and its partners by small, relatively inexpensive, missions of the Discovery class, as well as the reshaping of our ideas about life in the solar system that have been occasioned by the Galileo spacecraft's discovery that an ocean under the ice on Jupiter's moon Europa might, indeed, exist. This paper will report on NASA's planned implementation of planetary protection provisions based on these recent National Research Council recommendations, and will suggest measures for incorporation in the planetary protection policy of COSPAR.  相似文献   

18.
Breakup model is the key area of space debris environment modeling. NASA standard breakup model is currently the most widely used for general-purpose. It is a statistical model found based on space surveillance data and a few ground-based test data. NASA model takes the mass, impact velocity magnitude for input and provides the fragment size, area-to-mass ratio, velocity magnitude distributions for output. A more precise approach for spacecraft disintegration fragment analysis is presented in this paper. This approach is based on hypervelocity impact dynamics and takes the shape, material, internal structure and impact location etc. of spacecraft and impactor, which might greatly affect the fragment distribution, into consideration. The approach is a combination of finite element and particle methods, entitled finite element reconstruction (FER). By reconstructing elements from the particle debris cloud, reliable individual fragments are identified. Fragment distribution is generated with undirected graph conversion and connected component analysis. Ground-based test from literature is introduced for verification. In the simulation satellite targets and impactors are modeled in detail including the shape, material, internal structure and so on. FER output includes the total number of fragments and the mass, size and velocity vector of each fragment. The reported fragment distribution of FER shows good agreement with the test, and has good accuracy for small fragments.  相似文献   

19.
Controlled Ecological Life Support Systems (CELSS) flight experimentation.   总被引:1,自引:0,他引:1  
The NASA CELSS program has the goal of developing life support systems for humans in space based on the use of higher plants. The program has supported research at universities with a primary focus of increasing the productivity of candidate crop plants. To understand the effects of the space environment on plant productivity, the CELSS Test Facility (CTF) has been been conceived as an instrument that will permit the evaluation of plant productivity on Space Station Freedom. The CTF will maintain specific environmental conditions and collect data on gas exchange rates and biomass accumulation over the growth period of several crop plants grown sequentially from seed to harvest. The science requirements of the CTF will be described, as will current design concepts and specific technology requirements for operation in micro-gravity.  相似文献   

20.
本文分析了空间生命科学的发展战略,对21世纪初期的研究设想进行了概括,较详细地介绍了空间生命科学四个方面的内容:空间生理学和医学,包括空间医学、空间生理学、空间作业医学和人在空间的作用;空间生物学,包括重力生物学、可控生态生保系统、生物圈和地外生物学;空间站生物医学工程以及空间生物材料的加工生产。本文还讨论了各方面存在的主要问题和今后的发展趋向,特别强调了空间高枝术应用对促进国民经济发展的巨大潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号