首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A possibility of attaining steady flow of detonation products with specific energy much larger than the specific chemical energy of explosive is demonstrated in the case when a cylindrical charge of explosive is fitted with an evacuated cavity. Simple estimates and results of numerical analysis of the process are presented. Steady process may be considered to occur under the following assumptions: (1) effects arising due to jet interaction with cavity walls are negligible; (2) the detonation process is steady. In the case of limited explosive lengths these assumptions have been shown to be correct.When the cavity is filled with gas or liquid, a variety of steady and non-steady flow regimes is possible, depending on the density of the filling medium. One well-known case is that of flow with irregular reflection of shock waves at the cavity axis accompanied with the formation of Mach intersections. Another interesting flow regime is observed to occur in the case of low density filling medium (liquid hydrogen, for example). In this case the filling medium is driven by a “detonation piston” at constant velocity, equal to the velocity of detonation, forming a uniform growing column of hot shock-compressed matter, specific energy of which exceeds by one order of magnitude the specific energy of the explosive. Obviously, the walls of the vessel containing hydrogen must be able to withstand radial loads for a sufficiently long time (20 μ sec).The relative merits of these methods in comparison to others in high speed gas-dynamics is discussed.  相似文献   

2.
The generation of a spherical detonation was verified experimentally by two coalescing deflagration waves. Numerical results of treating the three different types of deflagration of detonation transition with Hugoniot curves are in full agreement with our experimental observations.  相似文献   

3.
This paper briefly describes two attempts to utilize detonative combustion processes to MHD conversion of thermal energy of fuel to electrical energy and bonding of atmospheric nitrogen. For this purpose a continuous impulse detonation chamber with a frequency up to 200 cps was constructed. Using methane-oxygen-nitrogen mixtures the chamber was maintained in stable operation for several hundred hours. Oil was also employed as fuel.Estimates based on experimental data showed that up to 2% of chemical energy of the fuel may be converted into electrical energy. The use of an accelerating nozzle may improve this result.The concentration of nitrogen oxide in combustion products of the detonation wave was higher by 14% than that expected under usual combustion conditions.The advantages of this type of apparatus are: absence of compressors for fuel and oxidant, impulse current generation, low temperatures of chamber walls, and operation over a large range of operating conditions.Problems associated with the effect of the magnetic field on the propagation of the detonation wave are discussed and the possibility of applying the Zeldovich theory to the case of MHD interaction is described. It is shown that the detonation velocity may either increase or decrease depending on the relative orientation of the direction of magnetic field with respect to the detonation wave.  相似文献   

4.
The effects of a hot jet on detonation initiation and propagation in supersonic combustible mixtures has been studied with two-dimensional numerical simulations with the open-source program AMROC that uses a block-structured adaptive mesh refinement method. Results indicate that the hot jet could ignite the detonation effectively in supersonic combustible mixtures like a pneumatic ramp. After the realization of the detonation initiation, the hot jet can still play an important role on the detonation propagation during its continuous ejection. For a hot jet with certain diameter, it can result in an overdriven detonation with almost constant overdrive degree. After the shutdown of the hot jet, the stable CJ detonation combustion was realized finally in the supersonic combustible mixtures. With the re-ejection of the hot jet, the failed detonation could be reinitiated quickly. Through the control of the re-ejection of the hot jet, it plays a key role not only in the initiation process, but also in the subsequent continuous detonation combustion period.  相似文献   

5.
In connection with the use of cryogenic liquids in high-speed gas dynamics and high-pressure physics, shock-wave processes in liquid hydrogen were investigated under plane, cylindrical and hemispherical loading.The plane loading of liquid hydrogen consisted of a multicyclic, nearly isentropic compression. A transducer employing a contact electrical effect was used to record this multicyclic compression process between a rigid wall and a flyer, resulting in a sequence of shock steps of decreasing amplitude, whose integrated action is equivalent to the isentropic compression of liquid hydrogen up to 500 kbar.The cylindrical loading was generated by detonating a high-explosive charge enclosing a cylindrical cavity along its axis that was filled with liquid hydrogen. Under these conditions shock velocities up to 13.7 km/sec were recorded, and pressure in the shock-compressed hydrogen reached 90 kbar. The formation of a boundary layer and expansion of the cylindrical cavity limited further pressure increases in the column of compressed liquid and lead to a decrease in the flow velocity. The observed increase in detonation velocity is associated with the influence of the channel wave on the detonation regime in the neighboring explosive layers.Under hemispherical loading, an increase in the converging shock velocity from 6 to 20 km/sec was recorded. The final pressure reached 210 kbar, and the total specific energy exceeded 200 kJ/g. During the release of the shock-compressed hydrogen into air at 0.1 torr, shock waves with velocities exceeding 50 km/sec were obtained.  相似文献   

6.
郭红杰  梁国柱  马彬 《宇航学报》2006,27(5):1068-1071,1112
爆震波点火器用于工程,其设计存在一个最佳结合点,使得在合适的管路中,爆震波传播速度、转捩距离、爆震波能量等能够符合点火器目标需求。为了研制适用于工程的爆震波点火器,在氢氧爆震波点火器基本特性试验的基础上,对初始混合气体的混合比等与爆震波特性的关系进行了研究。对实验结果进行分析认为。混合比对爆燃爆震转捩(DDT)距离影响较大,混合比大于3时,其转捩距离小于500mm。混合比增加时,爆震波传播速度会减小,但稳定的爆震波相对于波的混气的马赫数并小减小,维持在4.8左右。在初始混气压力不变情况下,质量流量可以提高爆震波能量,增强爆震波的点火能力。研究结论时爆震波点火器在工程中实际应用及以后的研究方向具有指导性作出。  相似文献   

7.
邱华  何有权  门凯 《火箭推进》2021,47(1):29-35
在脉冲爆震发动机工作过程中,爆震室压力处于强非定常状态.传统的型面不可调尾喷管与可调尾喷管都无法满足爆震室内压力的高频剧烈变化,进而导致较大的推力损失.为了提升现有脉冲爆震发动机型面不可调增推喷管性能,可以从爆震室中引出爆震燃气,通过无阀自适应控制将该二次流喷射在喷管扩张段,实时调节主流的有效扩张面积比,进而形成流体喷...  相似文献   

8.
The present study examines the role of transverse waves and hydrodynamic instabilities mainly, Richtmyer–Meshkov instability (RMI) and Kelvin–Helmholtz instability (KHI) in detonation structure using two-dimensional high-resolution numerical simulations of Euler equations. To compare the numerical results with those of experiments, Navier–Stokes simulations are also performed by utilizing the effect of diffusion in highly irregular detonations. Results for both moderate and low activation energy mixtures reveal that upon collision of two triple points a pair of forward and backward facing jets is formed. As the jets spread, they undergo Richtmyer–Meshkov instability. The drastic growth of the forward jet found to have profound role in re-acceleration of the detonation wave at the end of a detonation cell cycle. For irregular detonations, the transverse waves found to have substantial role in propagation mechanism of such detonations. In regular detonations, the lead shock ignites all the gases passing through it, hence, the transverse waves and hydrodynamic instabilities do not play crucial role in propagation mechanism of such regular detonations. In comparison with previous numerical simulations present simulation using single-step kinetics shows a distinct keystone-shaped region at the end of the detonation cell.  相似文献   

9.
A numerical study for the unsteady detonation of an unconfined tetryl charge of small diameter, which is assumed to be homogeneous, was performed by using the two-dimensional Lagrangian hydrodynamic computer code, 2 DL, with the first order Arrhenius equation of reaction rate. Becker-Kistiakowsky-Wilson (BKW) and Kihara-Hikita (KH) equations of state have been applied to the detonation products.In the case of BKW, it is shown that the rarefaction waves propagating inward from the lateral surface make the reaction rate slow and give a curvature to the front. Then after an induction time, a strong initiation occurs in the reaction zone near the lateral surface and higher pressure zone moves to the axis. This higher pressure accelerates the detonation propagation near the lateral surface and the curvature of detonation front is reduced. Then, the reaction at the lateral surface again begins to decay by the rarefaction waves. Such a sequence of process is repeated periodically.The possibility of the occurrence of the strong initiation depends on the pressure and temperature in the shocked zone near the surface. In a small diameter charge, the delayed explosion becomes weaker near the surface, while its frequency increases. No shock interaction occurs because the direction of the particle flow is always divergent.In the case of KH equation of state, the temperature of detonation is higher than that obtained by BKW and the behaviour of instability becomes rather different from the previous result, i.e. in the axis the pressure oscillates repeating the overdriven and underdriven detonation similar with the case of BKW.  相似文献   

10.
建立了氢氧爆震波点火器试验系统,并根据试验塞式喷管发动机工作状态要求设计了爆震波点火器。在高空条件下(0.005 ̄0.002MPa),爆震波点火器供气压力0.3MPa、混合比3左右,对爆震波点火器的点火性能进行了试验,成功实现了高空条件下爆震波点火火炬。在同样高空条件下对爆震波点火器点燃单元塞式喷管试验发动机成功进行了点火试验。试验结果表明,氢氧爆震波点火器能以较低的供气压力实现可靠点火。爆震波点火器在气氢气氧单元塞式喷管试验发动机点火的成功应用,为下一阶段应用于多管塞式喷管发动机的实际点火试验提供了技术基础。  相似文献   

11.
刘龙  夏智勋  黄利亚 《宇航学报》2018,39(3):239-248
针对在氧化性气相氛围以及在燃料/氧化剂混合气相氛围中粉末燃料爆震燃烧波的传播特性,总结了气相氛围中悬浮粉末燃料爆震燃烧的实验和数值模拟研究进展,归纳了影响爆震波速度、稳定性、传播模式、细观结构和胞格尺寸的主要因素。同时,还介绍了粉末燃料应用于爆震发动机或燃烧室的案例;结合粉末爆震自身特点对实验装置和燃烧诊断测试手段和数值模拟方法进行总结分析;最后针对下一步需要开展的研究工作进行展望 。  相似文献   

12.
The advantages of a constant volume combustion cycle as compared to constant pressure combustion in terms of thermodynamic efficiency has focused the search for advanced propulsion on detonation engines. Detonation of acetylene mixed with oxygen in various proportions is studied using mathematical modeling. Simplified kinetics of acetylene burning includes 11 reactions with 9 components. Deflagration to detonation transition (DDT) is obtained in a cylindrical tube with a section of obstacles modeling a Shchelkin spiral; the DDT takes place in this section for a wide range of initial mixture compositions. A modified ka-omega turbulence model is used to simulate flame acceleration in the Shchelkin spiral section of the system. The results of numerical simulations were compared with experiments, which had been performed in the same size detonation chamber and turbulent spiral ring section, and with theoretical data on the Chapman–Jouguet detonation parameters.  相似文献   

13.
煤油温度对于爆震波形成影响的实验研究   总被引:1,自引:0,他引:1  
在内径为30mm的脉冲爆震发动机模型上,以煤油为燃料,以空气为氧化剂,成功地进行了两相爆震实验,获得了充分发展的脉冲爆震波。测试了在化学恰当比,不同爆震频率及燃油温度下的爆震波压力,并对其变化进行了分析。通过分析实验结果发现,在化学恰当比下,爆震频率不变时,煤油温度的升高明显促进了爆震的形成,在内径小于混合物胞格尺寸的爆震管内,可以形成充分发展的两相脉冲爆震波。  相似文献   

14.
Spherical detonations have been initiated by solid explosive (Tetryl) charges in well-mixed stoicheiometric air mixtures with each of the hydrocarbons, ethane, propane, n-butane, isobutane and ethylene at atmospheric pressure. Prior to initiation, the gases were contained in plastic bags; total gas volume and available path length were up to 1.6 m3 and 2 m, respectively. The detonations were shown to be self-sustained by continuous measurement of detonation velocity using X-band microwave interferometry. Measured detonation velocities were in all cases close to calculated C-J values.In a few experiments close to the limits of detonability, velocity and blast pressure/time records indicated that the propagating wave system is sometimes irregular. The irregularity that occurs just after initiation is characterised by a reaction front velocity very much lower than the constant detonation velocity, but subsequently attaining the latter by an acceleration process. These observations indicate the existence of a dissociated phase in which shock and reaction fronts may no longer be coupled.Because similar experimental conditions were used throughout, it was possible to establish the relative susceptibilities of the various fuel gases to detonation. Comparison is made with the Zeldovich criterion and a detonation kernel theory of Lee.  相似文献   

15.
用拉氏量计和分析技术研究固体推进剂冲击波作用过程   总被引:1,自引:0,他引:1  
本文建立了适合于研究固体推进剂冲击波作用过程的拉氏量计和分析技术,应用这种技术能清楚地表现固体推进剂内部状态变化过程和化学反应过程。并用这种技术研究了聚硫复合推进剂、丁羟复合推进剂、双基推进剂和改性双基推进剂冲击波转爆轰和爆轰过程。结果表明,复合推进剂与双基和改性双基推进具有明显不同的状态变化过程和化学反应过程。  相似文献   

16.
In the present paper, we study the problem of detonation in unconfined, gaseous mixtures of methane/oxygen/nitrogen. A numerical simulation approach is employed in which we use a one-dimensional (spherical symmetry), time-dependent computer model to simulate the coupled compressible fluid dynamics-chemical kinetics processes which occur upon direct initiation of detonation. We establish the magnitude of explosive yield of tetryl required to initiate detonation in mixtures of CH4 + 2O2 with varying degrees of nitrogen dilution, up to and including stoichiometric . The numerical simulations illustrate the features of direct initiation observed in many experimental investigations, e.g. shock-wave breakaway followed by detonation reestablishment via a quasi-steady, oscillatory flow regime which occurs before the establishment of a steadily propagating spherical detonation. Our results compare well with recent experimental data obtained by Bull et al. (1976) over the range of tetryl masses studied by them. We find that tetryl explosive masses in excess of 107 grams would be required to initiate detonation in an unconfined, stoichiometric mixture.  相似文献   

17.
A model for an elementary detonation cell is postulated. On its basis, the geometry of the cell pattern and the kinematics of the wave fronts forming the cells are evaluated. The cell size is determined assuming that the induction time obeys an Arrhenius relationship with temperature. Thus, it is shown that some kinetic parameters of the mixture, such as the activation energy, can be deduced from the cell size. It is also demonstrated that by combining the cell model with the experimental data on the propagation of the detonation wave in a rapidly expanding channel, the initiation energy for a cylindrical detonation wave can be estimated.  相似文献   

18.
《Acta Astronautica》2010,66(11-12):1599-1615
High energy pulses of a CO2 laser are focused in a parabolic mirror yielding to a laser-supported detonation. The generated thrust acting on the reflector as a bell nozzle is studied in multiple pulse free flight experiments with respect to axial, lateral and angular momentum coupling. The employment of an ignition pin on the reflector's axis of symmetry lowering the ignition threshold by several orders of magnitude is found to provide for a reproducible detonation process. The axial momentum coupling of each pulse is analyzed with respect to initial lateral offset and tilt during the flight. High speed analyses of recorded flights indicate that lateral momentum components occur re-centering the thruster on the beam. Thrust vector steering can be realized by tilt of the ignition pin inside the thruster, thus shifting the detonation. A design model of a laser-driven rocket including a remotely accessible steering gear was developed and tested successfully.  相似文献   

19.
Cylindrical heterogeneous detonation waves   总被引:1,自引:0,他引:1  
Further experimental studies of blast wave initiated cylindrical heterogeneous (liquid fuel drops, gas oxidizer) detonation waves are described. A pie-shaped shock tube, used for these studies, was altered in certain ways so as to improve the modeling of cylindrical waves. These modifications, along with some operational aspects, are briefly discussed. The breech of the facility, where the blast wave is generated by an explosive, became distorted with usage. Results are presented which show that lower detonation velocities are realized with the damaged breech (other conditions being the same). A photographic and pressure switch wave time of arrival study was made to ascertain the wave shape. Photographs are shown which show that the waves, blast as well as detonation, are close to cylindrical. However, in some cases there is appreciable distortion of the wave front by debris ahead of the wave. Presumably this debris comes from the blasting cap used to ignite the condensed explosive. A series of experiments was conducted using kerosene drops of 388 μm diameter dispersed in air through use of a large number of hypodermic needles. Radial fuel void regions were established by cutting off the fuel flow to a number of needles. Preliminary results relating to the effect of the size of the cloud gap on detonation velocity, quenching, and the initiator energy levels required for detonation are discussed.  相似文献   

20.
超声速斜爆震发动机起爆过程研究综述   总被引:3,自引:0,他引:3  
对超声速斜爆震发动机的起爆方式进行了比较分析,对起爆发展和稳定特性的研究历程和发展现状进行了综述,对相关的研究方法和技术进行了概括,提出了利用先进光学测量技术,结合激光诱导荧光技术对超声速斜爆震发动机起爆过程进行实验研究的设想。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号