首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 234 毫秒
1.
有人月球基地构建方案设想   总被引:2,自引:0,他引:2  
有人月球基地的建设能将人类的活动区域扩展到月球,实现月球资源的深度开发和利用,服务于人类社会发展。中国开展月球基地建设,在技术上是空间站工程和载人登月工程的有效结合,也有利于其载人航天工程的可持续发展。文章针对有人月球基地的构建,将有人月球基地构建的基本途径分为刚性舱组装、柔性舱组装和月面建筑式三大类,并指出在月球基地发展的不同阶段构建途径的选择原则,再结合中国国情,提出了中国在有人月球基地发展初期的构建方案,最后对有人月球基地构建中的一些关键问题进行了分析总结。  相似文献   

2.
一种综合式载人月球基地总体方案及建造规划设想   总被引:4,自引:0,他引:4  
构建载人月球基地是实现对月球资源深度开发和利用的重要手段之一,文章提出了刚性舱、刚性+柔性结构以及建造式等三种典型结构的载人月球基地方案,并对三种典型方案的优缺点进行对比分析,在此基础上提出了一种综合式载人月球基地方案设想,基地内部主体创新性地采用充气式柔性连接的方式,外部主体包括月壤防护层、植物密封舱和应急救生飞船,活动系统包括月球车和月球机器人。围绕该方案并结合文章提出的载人月球基地主要技术指标,并对载人月球基地选址、结构设计和构建、空间辐射防护、热管理、能源、通信与导航、生命保障和应急救生技术等关键技术方案进行了分析,为中国未来建设载人月球基地提供了参考。  相似文献   

3.
月面设施原位建造技术的研究进展   总被引:1,自引:0,他引:1  
月面设施原位制造技术是未来航天科技发展的热点技术之一。以美、欧为代表的航天强国及组织均开展了月球原位制造技术的研究,研制了原位制造设备,并开展了相应的地面工艺验证工作,积累了有价值的试验数据和技术参数。在充分调研及跟踪国内外月面设施原位建造最新成果的基础上,系统分析国内外月面设施原位建造技术的发展思路,为我国月球基地的建造提供参考,对我国的载人登月、月球基地等月球探测任务的实施具有重要意义。  相似文献   

4.
《中国航天》2009,(3):44-44
俄罗斯联邦航天局载人航天计划负责人克拉斯诺夫1月29日称,该局近期将向政府建议建设一座低轨空间站,用以支持未来的月球和火星探测。他说,俄和一些其它国家都在把月球作为中期探测目标。不仅要实现月球往返飞行,还要建设月球基地,以便能在未来开始探测火星。他说,这只是打算。但俄航天局正在努力保证这些计划得到政府经费和立法上的充分支持。  相似文献   

5.
美国下一个国家航天计划的目标很可能是在月球上建立一个美国的基地,月球基地方案正在获得广泛的支持。这一计划将比准备进行的火星探索计划更早地确立美国航天领先地位,并为以后载人火星飞行打下基础。 美航宇局(NASA)局长詹姆斯·弗莱彻在设法为白宫的关键人物安排建立月球基地的基本情况介绍会,以便为白宫向里根总统呈送一份建议书做准备,该情况介绍会因伊朗门事件而拖延了。  相似文献   

6.
无人月球基地总体初步设想   总被引:3,自引:1,他引:2  
构建月球基地是月球探测的核心目标之一。作为一个巨型项目,月球基地总体建设涉及空间运输、能源、结构构建、月面移动、资源利用、科学探索、测控通信等诸多方面。文章尝试论述构建无人月球基地的任务目标、核心功能与组成、概念方案、实施步骤等核心要素,提出构建无人月球基地的总体思路,为未来月球基地任务的实施提供参考。  相似文献   

7.
靳力 《航天器工程》2008,17(3):50-50
2008年4月7日,据美国航天网站报道,NASA考虑在未来月球任务中使用可移动的机器人月球基地。一种被称作全地形六足地外探测器(ATHLETE)可能在新月球基地中发挥重要作用。NASA称,一个重15t的月球居留舱将安装在六足机器人的顶部,它将可以从月球着陆器中走出,并前往任何一个希望到达的位置。它在水平地面将使用轮子移动;在更具挑战性的地形将充分使用灵活的机械腿。  相似文献   

8.
靳力 《航天器工程》2007,16(6):32-32
2007年9月中旬,美国NASA“沙漠RATS”小组在亚利桑那州的一处沙漠中测试“侦察兵”新型月球概念车。测试地点与未来要登陆的月球表面地形十分相似,以便检测月球车、遥控机器人和探月航天员的新式宇航服等样品,模拟未来航天员在月球上活动中各种设施的使用功能。航天工程专家尝试未来修建月球基地的“人机配合”活动,由航天员利用机器人和月球车进行月球基地选址勘测,铺设太阳能电池阵和电缆等。美国按照“重返月球”计划,最早将于2020年运送航天员重登月球,为探索火星和宇宙空间建立永久基地。  相似文献   

9.
有人月球基地构型及构建过程的设想   总被引:1,自引:0,他引:1  
《航天器工程》2015,(5):23-30
与传统航天器设计不同,有人月球基地涉及构型与构建、能源、月面移动、资源利用等诸多方面。文章在对国外有人月球基地不同构型对比分析的基础上,提出了我国有人月球基地方案设想,包括刚性舱构型、刚性+柔性舱构型、建造式构型和综合式有人月球基地方案,并进一步提出了有人月球基地构建过程设想,可为我国未来有人月球基地建设提供参考。  相似文献   

10.
阳光 《航天》2012,(6):10-10
作为建设有人月球基地的第一步,俄拟在2020年后发射两辆月球车,并在2022年发射一个着陆站。俄科学家的核心目标是研究月球极区及气体尘埃外大气层,采集土样,并找出最适宜建设月球基地的区域。  相似文献   

11.
When the requisite technology exists, the US political process will inevitably include lunar surface activities as a major space objective. This article examines a manned lunar base in terms of three distinct functions: the scientific investigation of the Moon and its environment; development of the capability to use lunar resources for beneficial purposes throughout the Earth-Moon systems; and conduct of R&D leading to a self-sufficient and self-supporting manned lunar base. Three scenarios are outlined with respect to each possible function.  相似文献   

12.
A cis-lunar transportation system (CLTS) can be designed to provide combinations of two services: lunar export and lunar import. The set of all such combinations is called the production possibility frontier (PPF), which in turn is a familiar concept from micro-economics. The CLTS envisioned operates flights between space stations in low Earth orbit (LEO) and low lunar orbit (LLO), and flights between LLO and lunar base (LB). A system of 28 equations is presented which models the interactions between structure, payload and propellants in the CLTS. The traffic ratio of LB-LLO-LB flights to LEO-LLO-LEO flights is determined to be a key parameter for achieving high lunar export/import ratios. It is also shown that the CLTS can achieve a significant net mass gain in LEO, thus creating the possibility of lunar exports generating revenues for the colony by competing on price in LEO with terrestrial exports.  相似文献   

13.
This article reports about the results of the latest computer runs of a lunar base simulation model. The lunar base consists of 20 facilities for lunar mining, processing and fabrication. The infrastructure includes solar and nuclear power plants, a central workshop, habitat and farm. Lunar products can be used for construction of solar power systems (SPS) or other spacecraft at several space locations. The simulation model evaluates the mass, energy and manpower flows between the elements of the system as well as system cost and cost of products on an annual basis for a given operational period. The 1983 standard model run over a fifty-years life cycle (beginning about the year 2000) was accomplished for a mean annual production volume of 78 180 Mg of hardware products for export resulting in average specific manufacturing cost of 8.4 $/kg and total annual cost of 1.25 billion dollars during the life cycle. The reference space transportation system uses LOX/LH2 propulsion for which at the average 210 500 Mg LOX per year is produced on the moon. The sensitivity analysis indicates the importance of bootstrapping as well as the influence of market size, space transportation cost and specific resources demand on the mean lunar manufacturing cost. The option using lunar resources turns out to be quite attractive from the economical viewpoint. Systems analysis by this lunar base model and further trade-offs will be a useful tool to confirm this.  相似文献   

14.
In this paper, to meet the environmental requirements for the lunar surface, we outline the design of an intelligent shape memory polymer(SMP) capsule structure of lightweight using a flexible composite skin. Key breakthrough technology for manufacturing the high-performance multilayer composite is utilized to realize the requirements for folding and compressing during launching, and unfolding on the lunar surface, taking into account the current opposing requirements for launching and the space transportation mission of large equipment. Based upon the reduced constraints, better expansibility and easy assembly, this lunar base is suited to the initial and interim phases of a moon construction, and provides a national solution in the construction of lunar base on moon.  相似文献   

15.
The paper discusses two methods for lunar surface access. One method is characterized by very little propellant consumption for landing (lunar slide lander, LSL); the other (drop delivery method, DDM) avoids release of propellant gases at the lunar surface. The LSL is of particular promise and importance. Its analysis and development introduces a new field of cosmic dynamics—harenodynamics, the science and technology of interaction of surfaces with dust and sand at near-orbital speeds down to low velocities. Although the data base is small so far and needs to be enlarged, analyses of the LSL so far indicate promise as to feasibility. Its realization will revolutionize present conventional concepts of lunar development. The DDM offers cost-effective alternatives to conventional lunar landing by retrothrust, but on a more selective basis, because propellant-savings are secondary to avoiding gas releases into the lunar high-vacuum environment. It was found that stationary energy absorption systems (EAS) are required, because vehicle-attached absorption systems are entirely inadequate. This requires large structures which can be built on the lunar surface only after a somewhat higher degree of industrial capability has been established. However, they can be built entirely of lunar materials. Altogether, the LSL is the more significant of the two both in terms of economy and of operational scope.  相似文献   

16.
This first of several study papers, based on a fundamental paper presented in 1972, provides an independent conceptual analysis and evaluation of the lunar environment as industrial base and habitat. A selenosphere system strategy is outlined. The underlying concept is that of one or several lunar industrial zones for resource extraction and on-surface processing, integrated with a circumlunar zero-g processing capability, serving markets in geolunar space. A classification of lunar elements by utilization category is presented. Lunar oxygen is a prime candidate for being an initial economic “drawing card”, because of its value for fast transportation in geolunar space, requiring significantly fewer ships for equal transfer capability per unit time than electric transports which, however, have value, especially between geosynchronous and lunar orbit. The reduced development difficulties of controlled fusion outside the atmosphere and its advantages for extracting oxygen and other elements in quantity are summarized. Examples of lunar cycle management as fundamental exoindustrial requirement for economic resource enhancement are presented. The principal initial socio-economic value of lunar industry lies in the use of lunar resources for exoindustrial products and operations designed to accelerate, intensify and diversify Earth-related benefits. In the longer run, lunar settlements are a highly suitable proving ground for studying and testing the complex matrix of technological, biological, cultural, social and psychological aspects that must be understood and manageable before large settlements beyond Earth can have a realistic basis for viability. The lunar environment is more suitable for experimentation and comparatively more “forgiving” in case of failures than is orbital space.  相似文献   

17.
John M. Sarkissian   《Space Policy》2006,22(2):118-127
On 14 January 2004 President George Bush announced his vision for space exploration, to include a human return to the Moon. He argued that, with a moderate increase in NASA's annual expenditure, such a return was possible. This paper is an exploration of how the President's space initiative can be realised on an international co-operative basis along similar lines to those already existing with the international space station (ISS). By abandoning the concept of a lunar landing as the major goal of a lunar programme, the initiative is made feasible. The three-stage plan here presented meshes with the currently evolving plans for the US space initiative to provide a realistic, affordable and sustainable strategy for manned lunar exploration. It represents a significant opportunity for the USA to unite and lead the world on this grand, civilisation defining adventure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号