首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Improved ZCS-PWM commutation cell for IGBTs application   总被引:1,自引:0,他引:1  
An improved zero-current-switching pulsewidth-modulated (ZCS-PWM) commutation cell is presented, which is suitable for high-power applications using insulated gate bipolar transistors (IGBTs) as the power switches. It provides ZCS operation for active switches and zero-voltage-switching (ZVS) operation for passive switches. Besides operating at constant frequency and reducing commutation losses, the proposed ZCS-PWM switch cell has no additional current stress and conduction loss in the main switch. To demonstrate the feasibility of the proposed ZCS-PWM commutation cell, it was applied to a boost converter. Operating principle, theoretical analysis, design guidelines, and a design example are described and verified by experiment results obtained from a prototype rated 1 kW and operating at 40 kHz. The PWM switch model and state-space averaging approach is also used to estimate and examine the steady-state and dynamic character of ZCS-PWM boost converter system. Finally, the application of the proposed soft-switching technique in the dc-dc nonisolated converters is presented.  相似文献   

2.
与传统的Buck电路相比,基于H桥并联的DC/DC变换器可以实现电压的双极性输出和故障时的冗余控制,非常适合用于大功率电动机正反转控制的场合。分析了并联H桥型DC/DC变换器的结构组成和双脉宽调制(PWM)模式。为了降低双脉宽调制下H桥型DC/DC变换器的开通和关断损耗,对无源软开关技术进行了分析,重点探讨了RCD缓冲电路和最小应力缓冲电路之间的性能差异,指出最小应力软开关技术可以获得更好的软开关性能,并就将其用于双脉宽调制下的并联H桥DC/DC变换器进行了仿真研究。仿真结果表明:最小应力软开关技术用于双脉宽调制下并联H桥DC/DC变换器时,可以实现开关管的零电压开通和零电流关断。  相似文献   

3.
单端正激ZVT功率变换器实现   总被引:2,自引:0,他引:2  
高晓光  沈颂华  王均安 《航空学报》1998,19(Z1):116-118
介绍一种单端正激工作方式的零电压过渡(ZVT)软开关DC-DC变换器;描述该变换器的原理和特征;给出了应用ZVT软开关技术和集成控制块SG3525A的24V/9ADC-DC变换器电路和实验结果。  相似文献   

4.
提出一种新型有源软开关技术,在辅助开关和谐振电路的作用下,可以实现开关电源中开关管的零电压开通和零电压关断,而且可以减小开关管的电压应力和电流应力。对电路工作原理和参数设置进行了分析,给出了关键参数的选取原则。利用实际电路,验证了有源软开关技术的有效性。  相似文献   

5.
High power factor AC/DC/AC converter with random PWM   总被引:1,自引:0,他引:1  
A three-phase AC/DC/AC converter is presented with a power factor preregulator to improve the power quality in the input side and a pseudorandom noise generator to reduce the emitted acoustic noise and the mechanical vibration for an induction motor drive. The space vector modulation with hysteresis current control for a voltage source rectifier is adopted to simplify the hardware circuit. A control scheme is presented to drive the supply current following the reference current. The amplitude of reference current for the pulsewidth modulation (PWM) rectifier is derived from the DC bus voltage regulator and the estimated output power. Random switching frequency technique for a three-phase PWM inverter system to reduce the annoying tonal noise and resonant vibration from an induction motor is described. By randomly varying the instantaneous PWM switching frequency from one cycle to the next, the frequency distribution of harmonics is spread in a wide frequency range. The major advantage for using such a strategy is the nonrepetitive output spectral characteristic that results in reduction of torque pulsations in motor drive systems. The nearly unity power factor at the three-phase rectifier and the absence of acoustic noise concentrated at the specific tones which is usually present with conventional sinusoidal modulation are verified by the experimental tests  相似文献   

6.
A class-E DC-to-DC converter with half-wave controlled current rectifier is proposed. Its output voltage is controlled by the conduction angle of the rectifier switch at constant switching frequency. Zero voltage switching for all the switches can be maintained from full load to no load. Its steady state characteristics are analyzed and the effects of the circuit parameters are studied. Some extensions of the proposed converter are also discussed. The analysis is verified by PSPICE simulation and an experimental prototype  相似文献   

7.
A soft switching boost converter with zero-voltage transition (ZVT) main switch using zero-current switching (ZCS) auxiliary switch is proposed. Operating intervals of the converter are presented and analyzed. Design considerations are discussed. A design example with experimental results obtained from a 600 W, 100 kHz, 380 V output, power factor corrected, ac-to-dc, boost converter using insulated gate bipolar transistors (IGBTs) is presented, Results show that the main switch maintains ZVT while the auxiliary switch retains ZCS for the complete specified line and load conditions  相似文献   

8.
A new soft-switched ac-dc single-stage pulse width modulation (PWM) full-bridge converter is proposed. The converter operates with zero-voltage switching (ZVS), fixed switching frequency, and with a continuous input current that is sinusoidal and in phase with the input voltage. This is in contrast with other ac-dc single-stage PWM full-bridge converters that are either resonant converters operating with variable switching frequency control and high conduction losses, converters whose switches cannot operate with ZVS, or converters that cannot perform power factor correction (PFC) unless the input current is discontinuous. All converter switches operate with soft-switching due to a simple auxiliary circuit that is used for only a small fraction of the switching cycle. The operation of the converter is explained and analyzed, guidelines for the design of the converter are given, and its feasibility is shown with results obtained from an experimental prototype.  相似文献   

9.
A novel high-frequency transformer linked full-bridge type soft-switching phase-shift pulsewidth modulated (PWM) controlled dc-dc power converter is presented, which can be used as a power conditioner for small-scale photovoltaic and fuel cell power generation systems as well as isolated boost dc-dc power converter for automotive ac power supply. In these applications with low-voltage large-current sources, the full-bridge circuit is the most attractive topology due to the possibility of using low-voltage high-performance metal-oxide-semiconductor field-effect transistor (MOSFET) and achieving high efficiency of the dc-dc power converter. A tapped-inductor filter including the freewheeling diode is newly implemented in the output stage of the full-bridge phase-shift PWM dc-dc converter to achieve soft-switching operation for the wide load variation range. Moreover, in the proposed converter circuit, the circulating current is effectively minimized without using additional resonant circuit and auxiliary power switching devices. The practical effectiveness of the proposed soft-switching dc-dc power converter was verified in laboratory level experiment with 1 kW 100 kHz breadboard setup using power MOSFETs. Actual efficiency of 94-97% was obtained for the wide duty cycle and load variation ranges.  相似文献   

10.
A novel ac/dc/ac converter topology with three-level pulsewidth modulated (PWM) scheme for the single-phase ac/dc rectifier and random PWM scheme for ac drives is proposed. In order to improve the power quality in the single-phase rectifier, a ROM-based (read-only memory) control scheme, based on hysteresis current comparator, region detector, and capacitor compensator, is used to achieve a sinusoidal line current with low current distortion. The control scheme of the adopted three-level rectifier is easy to implement. The blocking voltage of power switches is clamped to half of the dc bus voltage. To reduce the mechanical vibration from an induction motor, random pulse position PWM scheme is adopted to spread the harmonics in a wide frequency range which results in the reduction of torque pulsation in the ac motor drives. Simulation and experimental results based on the laboratory prototype circuit are presented to verify the proposed control scheme  相似文献   

11.
Three pulse-width modulation (PWM) control schemes for a single-phase power-factor-correction (PFC) AC/DC converter are presented to improve the power quality. A diode bridge with two power switches is employed as a PFC circuit to achieve a high power factor and low line current harmonic distortion. The control schemes are based on look-up tables with hysteresis current controller (HCC) to generate two-level or three-level PWM on the DC side of diode rectifier. Based on the proposed three control schemes, the line current is driven to follow the sinusoidal current command which is in phase with the supply voltage, and two capacitor voltages on the DC bus are controlled to be balanced. The simulation and experimental results of a 1 kW converter with load as well as line voltage variation and shown to verify the proposed control schemes. It is shown that unity PFC is achieved using a simple control circuit and the measured line current harmonics satisfy the IEC 1000-3-2 requirements  相似文献   

12.
Novel single-phase AC/DC converter with two PWM control schemes   总被引:1,自引:0,他引:1  
A novel single-phase AC/DC converter with two pulsewidth modulation (PWM) schemes is proposed to draw a sinusoidal line current with nearly unity power factor, achieve balanced neutral point voltage and regulate the DC bus voltage. With the aid of neutral point clamped scheme, a three-level voltage pattern is generated on the AC side of the proposed rectifier. To track the tine current command derived from a voltage controller and a phase-locked loop circuit, a hysteresis current control scheme is used in the inner loop control. A capacitor voltage compensator is employed to achieve the balanced neutral point voltage. To investigate the effectiveness of the proposed control scheme, the simulation and experimental results based on a laboratory prototype circuit are performed.  相似文献   

13.
A new dc-dc converter featuring a steep step-down of the input voltage is presented. It answers a typical need for on-board aeronautics modern power architectures: power supplies with a large conversion ratio able to deliver an output voltage of 1–1.2 V. The proposed structure is derived from a switched-capacitor circuit integrated with a buck converter; they share the same active switch. The proposed solution removes the electromagnetic interference (EMI) emission due to the large di/dt in the input current of the switched-capacitor power supplies. Compared with a quadratic buck converter, it presents a similar complexity, a smaller reduction in the line voltage at full load (but less conduction losses due to smaller input inductor current and capacitor voltage), lower voltage stresses on the transistor and diodes, lower current stresses in the diodes, and smaller size inductors. A similar structure using a buck-boost converter as the second stage is also presented. The experimental results confirm the theoretical developments.  相似文献   

14.
A single-phase power factor preregulator to improve the power quality in the input side of an ac/dc/ac converter and a random pulsewidth modulation (PWM) to reduce the emitted noise energy and the mechanical vibration for an induction motor drive is proposed. The hysteresis current control (HCC) technique for a voltage source switching mode rectifier (SMR) is adopted. A control scheme is presented such that the line current is driven to follow the reference current which is derived from the dc bus voltage regulator and the output power estimator. A random pulse position technique for a three-phase voltage source inverter system to reduce the noise energy and resonant vibration from ac machine drive is described. By randomly varying the instantaneous pulse position in each switching frequency, the frequency distribution of harmonics is spread in a wide frequency range which results in reduction of torque pulsations in the ac motor drive systems. To investigate the proposed control scheme, experimental tests based on a laboratory prototype were implemented to show the nearly unity power factor at the SMR and reduce the noise energy concentrated at the specific tones  相似文献   

15.
传统型PWM控制的开关电源是硬件开关,开关损耗大,不利于向小型化,轻量化发展。本提出利用零电压开关谐振技术实现功率开关管的软开关技术,从而降低开关损耗,并采用SG3525为核心的主开关控制电路,提高系统的动态响应性能,同时采用UC3854对AC/DC变换过程作了功率因数校正,以改善输入电流的波形,提高电力资源的利用率。  相似文献   

16.
分析单相PWM整流电路的结构、工作原理和控制方法,通过选择适当的工作模式和工作时序,可使PWM整流电路输出直流电压稳定。将正弦脉宽调制技术应用于PWM整流电路,使其交流侧输入电流非常接近正弦波,且与输入电压同相位。同时调节交流侧电流的大小和相位,使能量在交流侧和直流侧双向流动。在建立基于Simu-link7.6的仿真模型基础上,通过分析PWM整流电路各处电压、电流波形,验证其控制方法及仿真设计的正确性。  相似文献   

17.
Three control techniques for a high power factor multilevel pulsewidth modulation (PWM) rectifier are proposed. The proposed rectifier is based on series connection of full-bridge cell to achieve a high power factor, low current distortion, low voltage stress of power semiconductors and two balanced output voltages. The look-up table is used in the proposed control schemes to reduce the hardware circuit. A capacitor voltage compensator is used to balance two dc capacitor voltages in order to obtain high quality PWM voltage pattern. Based on the proposed control schemes, two-level or three-level PWM pattern can be generated on the ac side of the adopted rectifier. The proposed techniques for a high power factor multilevel rectifier illustrate its validity and effectiveness through the respective simulations and experiments. According to the measured results, the current harmonics drawn from the mains meet the International Electrotechnical Commission (IEC) 1000-3-2 limits  相似文献   

18.
A circuit-oriented approach to the analysis of pulsewidth modulation (PWM) converters is presented. This method relies on the identification of a three-terminal nonlinear device, called the PWM switch, which consists of only the active and passive switches in a PWM converter. Once the invariant properties of the PWM switch are determined, its average equivalent circuit model can be derived. This model is versatile enough to easily account for storage-time modulation of bipolar junction transistor(s) (BJTs); the DC- and small-signal characteristics of a large class of PWM converters can then be contained by a simply replacing the PWM switch with its equivalent circuit model. The methodology is very similar to linear amplifier circuit analysis, whereby the transistor is replaced by its equivalent circuit model  相似文献   

19.
从电解电源的高频高效化、绿色化、数字化及智能化的发展方向出发,利用电流增强原理,设计了一种开关管带并联辅助网络的零电压全桥软开关电路拓扑,具有节能增效、可靠性高的优点.采用TMS320LF 2407A为核心控制芯片.得到了全桥移相PWM输出波形,并设计了反馈信号调理电路与后端驱动电路,电路形式简单紧凑,实现了软开关电解电源的全数字化控制.  相似文献   

20.
Earlier references have described a new soft switched ZVS/ZCS (zero voltage switching, zero current switching) converter for IGBTs that allows operation above 20 kHz. Although frequencies above 20 kHz are now possible for IGBT converters, the optimum frequency for minimum volume may be below 20 kHz because of heat sink requirements. A comparative study considers the reactive component versus heat sink volume tradeoff for two 6 kW converters, one using ZVS/ZCS and the other using a more conventional circuit with hard switching  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号