首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The SOHO/MDI data provide the uniform time series of the synoptic magnetic maps which cover the period of the cycle 23 and the beginning of the cycle 24. It is very interesting period because of the long and deep solar minimum between the cycles 23 and 24. Synoptic structure of the solar magnetic field shows variability during solar cycles. It is known that the magnetic activity contributes to the solar irradiance. The axisymmetrical distribution of the magnetic flux (Fig. 3c) is closely associated with the ‘butterfly’ diagram in the EUV emission (Benevolenskaya et al., 2001). And, also, the magnetic field (B) shows the non-uniform distributions of the solar activity with longitude, so-called ‘active zones’, and ‘coronal holes’ in the mid-latitude. Polar coronal holes are forming after the solar maxima and they persist during the solar minima. SOHO/EIT data in the emission of Fe XII (195 Å) could be a proxy for the coronal holes tracking. The active longitudinal zones or active longitude exist due to the reappearance of the activity and it is clearly seen in the synoptic structure of the solar cycle. On the descending branch of the solar cycle 23 active zones are less pronounced comparing with previous cycles 20, 21 and 22. Moreover, the weak polar magnetic field precedes the long and deep solar minimum. In this paper we have discussed the development of solar cycles 23 and 24 in details.  相似文献   

2.
Studying of the coronal plasma associated with long-lived complexes of the solar activity is important for understanding a relationship between the magnetic activity and the solar corona changing during the solar cycle.

In the present paper, two long-lived complexes of the solar activity at the beginning of the current solar cycle 23 are investigated by using the Extreme-Ultraviolet data (EUV) from SOHO/EIT. For this purpose the EIT limb synoptic maps during the CR1916–CR1919 (11 November 1996–1 March 1997) are obtained.

The coronal temperature structures derived from the three lines 171A (Fe IX,X), 195A (Fe XII)and 284A (Fe XV) are investigated by applying an algorithm developed by Zhang et al. [Zhang, J., White, S.M., Kundu, M.R. ApJ 527, 977, 1999]. Standard EIT software are used for the temperature estimation from the ratio of two lines of Fe IX,X and Fe XII.

The method of the rotational tomography with a correction for an inclination of the Earth’s orbit (B-angle) to the helioequator is applied to obtain the three-dimensional (3-D) coronal structure of the complex of the solar activity. The results reveal difference in temperature structures related to multi-poles magnetic structures of the complex of solar activity and to the typical, the bipolar activity complex.  相似文献   


3.
Very Large Array (VLA) observations at 20 and 91 cm wavelength are compared with data from the SOHO (EIT and MDI) and RHESSI solar missions to investigate the evolution of decimetric Type I noise storms and Type III bursts and related magnetic activity in the photosphere and corona. The combined data sets provide clues about the mechanisms that initiate and sustain the decimetric bursts and about interactions between thermal and nonthermal plasmas at different locations in the solar atmosphere. On one day, frequent, low-level hard X-ray flaring observed by RHESSI appears to have had no clear affect on the evolution of two closely-spaced Type I noise storm sources lying above the target active region. EIT images however, indicate nearly continuous restructuring of the underlying EUV loops which, through accompanying low-level magnetic reconnection, might give rise to nonthermal particles and plasma turbulence that sustain the long-lasting Type I burst emission. On another day, the onset of an impulsive hard X-ray burst and subsequent decimetric burst emission followed the gradual displacement and coalescence of a small patch of magnetic magnetic polarity with a pre-existing area of mixed magnetic polarity. The time delay of the impulsive 20 and 91 cm bursts by up to 20 min suggests that these events were unlikely to represent the main sites of flare electron acceleration, but instead are related to the rearrangement of the coronal magnetic field after the main flare at lower altitude. Although the X-ray flare is associated with the decimetric burst, the brightness and structure of a long-lasting Type I noise storm from the same region was not affected by the flare. This suggests that the reconfiguration of the coronal magnetic fields and the subsequent energy release that gave rise to the impulsive burst emission did not significantly perturb that part of the corona where the noise storm emission was located.  相似文献   

4.
The study concerns the streamer belt observed at high spectral resolution during the minimum of solar cycle 23 with the Ultraviolet Coronagraph Spectrometer (UVCS) onboard SOHO. On the basis of a spectroscopic analysis of the O VI doublet, the solar wind plasma parameters are inferred in the extended corona. The analysis accounts for the coronal magnetic topology, extrapolated through a 3D magneto-hydrodynamic model, in order to define the streamer boundary and to analyse the edges of coronal holes. The results of the analysis allow an accurate identification of the source regions of the slow coronal wind that are confirmed to be along the streamer boundary in the open magnetic field region.  相似文献   

5.
The SOHO (SOlar and Heliospheric Observatory) satellite was launched on December 2nd 1995. After arriving at the Earth-Sun (L1) Lagrangian point on February 14th 1996, it began to continuously observe the Sun. As one of the instruments onboard SOHO, the EIT (Extreme ultraviolet Imaging Telescope) images the Sun's corona in 4 EUV wavelengths. The He II filter at 304 Å images the chromosphere and the base of the transition region at a temperature of 5 − 8 × 104 K; the Fe IX–X filter at 171 Å images the corona at a temperature of 1.3 × 106 K; the Fe XII filter at 195 Å images the quiet corona outside coronal holes at a temperature of 1.6 × 106 K; and the Fe XV filter at 284 Å images active regions with a temperature of 2.0 × 106 K. About 5000 images have been obtained up to the present. In this paper, we describe also some aspects of the telescope and the detector performance for application in the observations. Images and movies of all the wavelengths allow a look at different phenomena present in the Sun's corona, and in particular, magnetic field reconnection.  相似文献   

6.
Active longitudes play an important role in spatial organization of solar activity. These zones associated with complexes of solar activity may persist for 20–40 consecutive rotations, and may be caused by large-scale non-axisymmetrical components of the global magnetic field. These zones of the field concentrations are 20°–40° wide and during subsequent rotations tend to reappear at constant longitude or drift slightly eastward or westward. Since the magnetic field is the principle source of the variations of radiation on the solar surface the active longitudes affect the solar irradiance received at the Earth. In this paper I study connections between the active longitudes and irradiance variations using VIRGO/SOHO, KPO and WSO data, which covered the transition period from solar cycle 22 to cycle 23 and rising phase of cycle 23. The result of this investigation is that active longitudes are associated with increases of the total solar irradiance and are prime sources of enhanced EUV radiation and coronal heating.  相似文献   

7.
The two XUV–EUV spectrometers on SOHO have collected a large amount of data in the 6000–106 K solar plasma temperature range. These data have allowed us to greatly enhance our knowledge of the processes acting in the solar atmosphere, from the chromosphere to the corona. Some results on the quiet Sun structure (network, quiet Sun versus coronal hole), on the dynamics (velocities, waves, transient events), and the main characteristics of the quiet Sun atmosphere are presented and discussed.  相似文献   

8.
The Yohkoh soft X-ray telescope obtains several images every 90 minutes. Data from the declining phase of the solar cycle have been used to compare the X-ray signal with other indicators of activity and to study coronal heating. X-ray emission from a north polar coronal hole is found broadly consistent with results of previous EUV observations. In diffuse emission regions, temperature rises to around 2.2 MK and levels off in the height range 1.5 – 1.9 RO. Such emission underlies streamers and may be the source of the low-speed solar wind. X-ray signatures for Coronal Mass Ejection (CME) events which involve the detection of reduced X-ray intensities in the corona, have been developed with Yohkoh data. CME observations are described  相似文献   

9.
The study of the variability of the solar corona and the monitoring of its traditional regions (Coronal Holes, Quiet Sun and Active Regions) are of great importance in astrophysics as well as in view of the Space Weather and Space Climate applications. Here we propose a multichannel unsupervised spatially constrained fuzzy clustering algorithm that automatically segments EUV solar images into Coronal Holes, Quiet Sun and Active Regions. Fuzzy logic allows to manage the various noises present in the images and the imprecision in the definition of the above regions. The process is fast and automatic. It is applied to SoHO–EIT images taken from February 1997 till May 2005, i.e. along almost a full solar cycle. Results in terms of areas and intensity estimations are consistent with previous knowledge. The method reveal the rotational and other mid-term periodicities in the extracted time series across solar cycle 23. Further, such an approach paves the way to bridging observations between spatially resolved data from imaging telescopes and time series from radiometers. Time series resulting form the segmentation of EUV coronal images can indeed provide an essential component in the process of reconstructing the solar spectrum.  相似文献   

10.
统计第23个太阳活动周内中等及以上强度(Dstmin<-50nT)的磁暴事件,线性拟合分析磁暴主相DDstmin和达到DDstmin前一个表征太阳极紫外辐射强度的F10.7之间的相关性.结果表明:随着太阳极紫外辐射增强,DDstmin<-50nT的磁暴出现的总数增多,在弱、中等和强太阳极紫外辐射条件下,其数量分别为56,84和85;随着太阳极紫外辐射增强,强磁暴(-200nT ≤ Dstmin<-100nT)和大磁暴(Dstmin<-200nT)发生的数量和相对发生率呈增长趋势,尤其是大磁暴数目(1,4,12)和相对发生率(1.79%,4.76%,14.12%)明显呈增长趋势;大磁暴(|Dstmin|)与太阳极紫外辐射(F10.7)之间存在中度正相关关系,其相关系数为0.532,并且主要体现在大磁暴(|Dstmin|)与强太阳极紫外辐射(F10.7)之间的中度正相关性,其相关系数为0.582.大磁暴与强太阳极紫外辐射之间的相关性可为空间天气预报提供参考依据.   相似文献   

11.
Wave and oscillatory activity is observed with modern imaging and spectral instruments in the visible light, EUV, X-ray and radio bands in all parts of the solar corona. Magnetohydrodynamic (MHD) wave theory gives satisfactory interpretation of these phenomena in terms of MHD modes of coronal structures. The paper reviews the current trends in the observational study of coronal oscillations, recent development of theoretical modelling of MHD wave interaction with plasma structures, and implementation of the theoretical results for the mode identification. Also the use of MHD waves for remote diagnostics of coronal plasmas is discussed. In particular, the applicability of this method to the estimation of the coronal magnetic field is demonstrated.  相似文献   

12.
在极紫外波段对太阳进行成像观测是研究太阳活动、日冕中等离子体物理特性的重要手段.传统极紫外成像仪或光谱仪无法同时实现高光谱分辨率和大视场的太阳成像.本文设计了一种新型太阳极紫外多谱段成像系统,采用无狭缝光栅分光方式实现了高光谱分辨率和空间分辨率的全日面成像,成像视场可达47',光谱分辨率每像素2×10-3 nm,空间分辨率每像素1.4',全日面时间分辨率优于60s.通过分析谱线的全日面成像图和系统响应,表明成像仪能大范围的观测太阳活动形态演化,为太阳物理研究和空间天气预报提供更完整的观测数据.   相似文献   

13.
We analyse the 30 October, 2004, X1.2/SF solar event that occurred in AR 10691 (N13 W18) at around 11:44 UT. Observations at 212 and 405 GHz of the Solar Submillimeter Telescope (SST), with high time resolution (5 ms), show an intense impulsive burst followed by a long-lasting thermal phase. EUV images from the Extreme Ultraviolet Imaging Telescope (SOHO/EIT) are used to identify the possible emitting sources. Data from the Radio Solar Telescope Network (RSTN) complement our spectral observations below 15 GHz. During the impulsive phase the turnover frequency is above 15.4 GHz. The long-lasting phase is analysed in terms of thermal emission and compared with GOES observations. From the ratio between the two GOES soft X-ray bands, we derive the temperature and emission measure, which is used to estimate the free-free submillimeter flux density. Good temporal agreement is found between the estimated and observed profiles, however the former is larger than the latter.  相似文献   

14.
冕洞特征参数与重现型地磁暴关系的统计研究   总被引:1,自引:1,他引:0  
在提取冕洞特征参数的基础上,利用1996年到2005年8月近十年来对地磁扰动有影响的356个冕洞事例,定量分析了冕洞特征参数(包括冕洞的面积比、经纬度跨度等)与冕洞高速流特征、重现型地磁扰动特征(包括扰动大小和持续时间等)之间的相关性,研究发现,从引起地磁扰动的冕洞在整个太阳活动周的分布来看,在地磁扰动峰年中冕洞影响同样具有重要的贡献;冕洞高速流太阳风速度与地磁扰动强度之间存在较强的相关性,而高速流中太阳风速度与冕洞面积比关系不大,与冕洞亮度存在一定相关性;冕洞的经度跨度与地磁扰动持续时间存在很强的正相关性.   相似文献   

15.
We studied the cyclic evolution of the latitudinal distribution of solar coronal active regions based on daily images from SOHO EIT for the period 1995–2017. Fully automated software was used, which included the following steps: initial preparation of images in the data series, normalization of histograms and correction of limb brightening, segmentation of images using threshold intensity values obtained from their histograms, scanning of segmented images in heliographic coordinates and obtaining profiles of latitudinal distribution of coronal active regions for each image of the data series. From the output data, we obtained a temporary change in the latitudinal distribution profiles and the migration of activity centers on the solar disk. From the period of minimum activity to the next minimum in both hemispheres, activity centers begin to migrate from high latitudes towards the equator. At the same time, the general center of activity repeatedly changes the direction of migration. The latitudinal distribution of the so-called presence factor of coronal active regions closely resembles the magnetic butterfly diagram, which proves their direct causal relationships. Variations in the presence factor of coronal active regions are correlated with cyclic variations in the sunspot daily numbers.  相似文献   

16.
EUV imaging observations from several space missions (SOHO/EIT, TRACE, and SDO/AIA) have revealed a presence of propagating intensity disturbances in solar coronal loops. These disturbances are typically interpreted as slow magnetoacoustic waves. However, recent spectroscopic observations with Hinode/EIS of active region loops revealed that the propagating intensity disturbances are associated with intermittent plasma upflows (or jets) at the footpoints which are presumably generated by magnetic reconnection. For this reason, whether these disturbances are waves or periodic flows is still being studied. This study is aimed at understanding the physical properties of observed disturbances by investigating the excitation of waves by hot plasma injections from below and the evolution of flows and wave propagation along the loop. We expand our previous studies based on isothermal 3D MHD models of an active region to a more realistic model that includes full energy equation accounting for the effects of radiative losses. Computations are initialized with an equilibrium state of a model active region using potential (dipole) magnetic field, gravitationally stratified density and temperature obtained from the polytropic equation of state. We model an impulsive injection of hot plasma into the steady plasma outflow along the loops of different temperatures, warm (~1 MK) and hot (~6 MK). The simulations show that hot jets launched at the coronal base excite slow magnetoacoustic waves that propagate to high altitudes along the loops, while the injected hot flows decelerate rapidly with heights. Our results support that propagating disturbances observed in EUV are mainly the wave features. We also find that the effect of radiative cooling on the damping of slow-mode waves in 1–6 MK coronal loops is small, in agreement with the previous conclusion based on 1D MHD models.  相似文献   

17.
In-situ measurements of ion and neutral composition and temperature across the dayside of Venus during 1979–1980 exhibit long and short-term changes attributed to solar variations. Following solar maximum, dayside concentrations of CO+ and the neutral gas temperature are relatively smoothly modulated with a 28-day cycle reasonably matching that of the solar F10.7 and EUV fluxes. Measurements some 6–8 months earlier show less pronounced and more irregular modulation, and short-term day-to-day fluctuations in the ions and neutrals are relatively more conspicuous than in the later period. During the earlier period, the solar wind at Venu exhibits relatively large velocity enhancements, which appear to be consistent with differences in solar coronal behavior during the two periods. It is suggested that through the solar wind variations and associated changes in the draping of the interplanetary magnetic field about the dayside, fluctuating patterns of joule heating may occur, producing the observed short term ion and neutral variations. This indirect energy effect, if verified, presents a complication for quantitatively analyzing the modulation in neutral temperature and ion concentration produced by changes in direct EUV radiation.  相似文献   

18.
The Ultraviolet Coronagraph Spectrometer on the Solar and Heliospheric Observatory, UVCS/SOHO, and the Ultraviolet Coronal Spectrometer on the Spartan 201 satellite, UVCS/Spartan, have been used to measure H I 1215.67 Å line profiles in polar coronal holes of the Sun at projected heliocentric heights between 1.5 and 3.0 R. UVCS/SOHO also measured line profiles for H I 1025.72 Å, O VI 1032/1037 Å, and Mg X 625 Å. The reported UVCS/SOHO observations were made between 5 April and 21 June 1996 and the UVCS/Spartan observations were made between 11 and 12 April 1993. Both sets of measurements indicate that a significant fraction of the protons along the line of sight in coronal holes have velocities larger than those for a Maxwellian velocity distribution at the expected electron temperature. Most probable speeds for O5+ velocity distributions along the lines of sight are smaller than those of H0 at 1.5 R, are comparable at about 1.7 R and become significantly larger than the H0 velocities above 2 R. There is a tendency for the O5+ line of sight velocity distribution in concentrations of polar plumes to be more narrow than those in regions away from such concentrations. UVCS/SOHO has identified 31 spectral lines in the extended solar corona.  相似文献   

19.
The structure and dynamics of a box in a stellar corona can be modeled employing a 3D MHD model for different levels of magnetic activity. Depending on the magnetic flux through the surface the nature of the resulting coronal structures can be quite different. We investigate a model of an active region for two sunspots surrounded by magnetic field patches comparable in magnetic flux to the sunspots. The model results in emission from the model corona being concentrated in loop structures. In Gudiksen and Nordlund (2005) the loops seen in EUV and X-ray emission outline the magnetic field, following the general paradigm. However, in our model, where the magnetic field is far from a force-free state, the loops seen in X-ray emission do not follow the magnetic field lines. This result is of interest especially for loops as found in areas where the magnetic field emerging from active regions interacts with the surrounding network.  相似文献   

20.
On 2010 February 8, the Extreme ultraviolet (EUV) flux variation in 195 Å and flare brightening has been examined in different sizes of active regions by using SOHO/EIT, MDI and Hαα observational data. These three active regions represent a large active region with a sunspot group, a moderate active region without a sunspot and a small region with weak plage in Hαα band respectively. Our study shows that the main full disk EUV flux comes from active regions, especially from large active regions. The sudden increases of EUV flux are corresponding to the EUV flare brightenings. For the large active region, the local EUV 195 Å flux peaks are well correlated to that of the GOES X-ray flux. The EUV 195 Å flux peaking time of M-class flares delay GOES X-ray flux a few minutes. For the moderate active region, the local EUV 195 Å flux is not well correlated to GOES X-ray flux. The EUV 195 Å flare brightenings in the moderate active region appeared in the duration of sudden increase of its own local EUV flux. For the small active region, the local EUV 195  Å flux varied almost independently of the GOES X-ray flux. Our study suggests that for an active region its local EUV 195 Å flux is more closely correlated to the EUV flare brightening than the full disk GOES X-ray flux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号