首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Using high-resolution Hα, CaII 8542 Å and FeI 6302.5 Å Stokes spectral data obtained simultaneously with THEMIS in 2002 September, we have analyzed the spectra and the characteristics of a two-ribbon microflare (MF). The hard X-ray emission provides evidence of non-thermal particle acceleration in the microflare. The two-ribbons are located on either sides of the magnetic polarity inversion line. The non-thermal characteristics mainly appeared at the outer edges of the flare ribbons. It indicates that the instantaneous magnetic reconnection and the particle acceleration mainly took place at the outer edges of the flare ribbons. Using the Hα and CaII 8542 Å line profiles and the non-LTE calculation, we obtain the semi-empirical atmospheric model for the bright kernel of the MF. The result indicates that the temperature enhancement in the chromosphere is about 2000–2500 K.  相似文献   

2.
We study a solar flare hard X-ray (HXR) source observed by the Reuven Ramaty high energy solar spectroscopic imager (RHESSI) in which the HXR emission is almost entirely in a coronal loop so dense as to be collisionally thick at electron energies up to ∼45−60 keV. This contrasts with most events previously reported in which the HXR emission is primarily from the loop footpoints in the collisionally dense chromosphere. In particular, we show that the high loop column densities inferred from the GOES and RHESSI soft X-ray emission measure and the volume of the flare loop are consistent with the coronal thick-target interpretation of the HXR images and spectra. The high column densities observed already at the very beginning of the impulsive phase are explained by chromospheric evaporation during a preflare which, as Nobeyama 17 GHz radio images reveal, took place in the same set of nested loops as the main flare.  相似文献   

3.
The GOES X3.9 flare on 03 November 2003 at ∼09:45 UT was observed from metric to millimetric wavelengths by the Nançay Radioheliograph (NRH), the Radio Solar Telescope Network (RSTN) and by radio instruments operated by the Institute of Applied Physics (University of Bern). This flare was simultaneously observed and imaged up to several 100 keV by the RHESSI experiment. The time profile of the X-ray emission above 100 keV and of the radio emissions shows two main parts, impulsive emission lasting about 3 min and long duration emission (partially observed by RHESSI) separated in time by 4 min. We shall focus here on the modulations of the broad-band radio continua and of the X-ray emissions observed in the second part of the flare. The observations suggest that gyrosynchrotron emission is the prevailing emission mechanism even at decimetric wavelengths for the broad-band radio emission. Following this interpretation, we deduce the density and the magnetic field of the decimetric sources and briefly comment on possible interpretations of the modulations.  相似文献   

4.
We present the analysis of the radio observations of December 1, 2004 from 07:00 UT to 07:40 UT in the 1.100–1.340 GHz band by Solar Broadband Radio Dynamic Spectrometer (SBRS) in Huairou Station. There are three groups of radio fine structures during the impulsive phase of this flare denoted by N1, Z2, and Z3. N1 has several emission lines with mixed fast and slow frequency drift rate which may reflect the conditions of flare loop and fast flows out from reconnection site; Z2 and Z3 are zebra patterns. The radio observations combined with hard X-ray and other observations show that the fine structures are connected with energetic particles. The information about magnetic field and energetic particle during the burst are also estimated based on our model.  相似文献   

5.
On January 20, 2005, 7:02–7:05 UT the Aragats Multidirectional Muon Monitor (AMMM) located at 3200 m a.s.l. registered enhancement of the high energy secondary muon flux (threshold ∼5 GeV). The enhancement, lasting for 3 min, has statistical significance of ∼4σ and is related to the X7.1 flare seen by the GOES, and very fast (>2500 km/s) CME seen by SOHO, and the Ground Level Enhancements (GLE) #69 detected by the world-wide network of neutron monitors and muon detectors. The energetic and temporal characteristics of the muon signal from the AMMM are compared with the characteristics of other monitors located at the Aragats Space-Environmental Center (ASEC) and with other neutron and muon detectors. Since secondary muons with energies >5 GeV are corresponding to solar proton primaries with energies 20–30 GeV we conclude that in the episode of the particle acceleration at 7:02–7:05 UT 20 January 2005 solar protons were accelerated up to energies in excess of 20 GeV.  相似文献   

6.
Recent advances have enabled simultaneous Hα and X-ray observations with substantially improved spatial, spectral, and temporal resolution. In this paper we study two events observed as part of a coordinated observing program between the Solar Maximum Mission and Sacramento Peak Observatory: the flares of 1456 UT, 7 May 1980 and 1522 UT, 24 June 1980. Using recently-developed physical models of static flare chromospheres, and corresponding theoretical Hα line profiles, we can distinguish effects of intense nonthermal electron heating from those of high conduction and pressure from the overlying flare corona. Both flares show the signature of intense chromospheric heating by fast electrons, temporally correlated with X-ray light curves at E > 27keV, and spatially associated with X-ray emission sites at E >62; 16 keV. Interpreting the Hα line profile observations using the theoretical Hα line profiles, we infer values of the thick-target input power contained in nonthermal electrons that are observationally indistinguishable (within a factor of 2–3) from those inferred from the X-ray data. Although these events are small, the energy flux values are large: of order 1011 ergs cm?2 s?1 above 20 keV.  相似文献   

7.
An occulted solar flare occurred at about 06:07 UT on 2002, November 2. The RHESSI X-ray images show two separate parts. The lower part consists of a complete loop and the upper part a coronal source which well extends above the solar limb. The loop source shrank for about 3 min with a speed of ∼24 km s−1 during the early impulsive phase and then expanded at ∼7 km s−1, while the coronal source presented an upward motion at about 6 km s−1. We obtained the temperature map of the loop source from RHESSI image spectrum. The temperature of the loop increases with altitude, indicating that the reconnection X-point of this flare is located above the loop source. However, the apparent coronal source is the top of another independent large-scale loop.  相似文献   

8.
Hard X-ray observations from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) of the October 29, 2003 GOES X10 two-ribbon flare are used together with magnetic field observations from the Michelson Doppler Imager (MDI) onboard SoHO to compare footpoint motions with predictions from magnetic reconnection models. The temporal variations of the velocity v of the hard X-ray footpoint motions and the photospheric magnetic field strength B in footpoints are investigated. The underlying photospheric magnetic field strength is generally higher (B  700–1200 G) in the slower moving (v  20–50 km s−1) western footpoint than in the faster (v  20–100 km s−1) moving eastern source (∼100–600 G). Furthermore, a rough temporal correlation between the HXR flux and the product vB2 is observed.  相似文献   

9.
Observations of hard X-ray (HXR)/γ-ray continuum and γ-ray lines produced by energetic electrons and ions, respectively, colliding with the solar atmosphere, have shown that large solar flares can accelerate ions up to many GeV and electrons up to hundreds of MeV. Solar energetic particles (SEPs) are observed by spacecraft near 1 AU and by ground-based instrumentation to extend up to similar energies as in large SEP events, but it appears that a different acceleration process, one associated with fast coronal mass ejections is responsible. Much weaker SEP events are observed that are generally rich in electrons, 3He, and heavy elements. The energetic particles in these events appear to be similar to those accelerated in flares. The Ramaty high energy solar spectroscopic imager (RHESSI) mission provides high-resolution spectroscopy and imaging of flare HXRs and γ-rays. Such observations can provide information on the location, energy spectra, and composition of the flare accelerated energetic particles at the Sun. Here, preliminary comparisons of the RHESSI observations with observations of both energetic electron and ion near 1 AU are reviewed, and the implications for the particle acceleration and escape processes are discussed.  相似文献   

10.
We made a detailed study of the impulsive solar flare of GOES class X1.0 which occurred near the west limb on 2002 August 3, peak time 19:07 UT. There is particularly good data coverage of this event, with simultaneous observations in EUV, soft and hard X-rays available. We used TRACE 171 Å images to study the morphology and evolution of this event. Soft X-ray spectra in the wavelength range 3.34–6.05 Å measured by the RESIK Bragg crystal spectrometer on CORONAS-F were used for determination of the evolution of the flare plasma temperature. Data from the RHESSI instrument were used to investigate properties of the higher-temperature plasma during the flare.  相似文献   

11.
Coronal hard X-ray (HXR) sources were discovered by the Yohkoh HXT telescope in about two dozen limb flares: Impulsive and gradual ones. On the basis of HXT data, we investigated the spatial evolution of coronal sources. Slow ascending motions of sources are seen in several flares. In five events, it was possible to estimate the velocity of the upward motion with values between 10 and 30 km/s. We present these observational results and conclude that coronal source motions should be studied statistically using the RHESSI high-resolution HXR imaging data. We discuss the possibility that coronal HXR emission is generated as bremsstrahlung of the fast electrons accelerated in collapsing magnetic traps due to joint action of the Fermi-type first-order mechanism and betatron acceleration.  相似文献   

12.
In this review I discuss the various γ-ray emission lines that can be expected and, in some cases have been observed, from radioactive explosive nucleosynthesis products. The most important γ-ray lines result from the decay chains of 56Ni, 57Ni, and 44Ti. 56Ni is the prime explosive nucleosynthesis product of Type Ia supernovae, and its decay determines to a large extent the Type Ia light curves. 56Ni is also a product of core-collapse supernovae, and in fact, γ-ray line emission from its daughter product, 56Co, has been detected from SN1987A by several instruments. The early occurrence of this emission was surprising and indicates that some fraction of 56Ni, which is synthesized in the innermost supernova layers, must have mixed with the outermost supernova ejecta.Special attention is given to the γ-ray line emission of the decay chain of 44Ti (44Ti  44Sc  44Ca), which is accompanied by line emission at 68, 78, and 1157 keV. As the decay time of 44Ti is ∼86 yr, one expects this line emission from young supernova remnants. Although the 44Ti yield (typically 10−5–10−4M) is not very high, its production is very sensitive to the energetics and asymmetries of the supernova explosion, and to the mass cut, which defines the mass of the stellar remnant. This makes 44Ti an ideal tool to study the inner layers of the supernova explosion. This is of particular interest in light of observational evidence for asymmetric supernova explosions.The γ-ray line emission from 44Ti has so far only been detected from the supernova remnant Cas A. I discuss these detections, which were made by COMPTEL (the 1157 keV line) and BeppoSAX (the 68 and 78 keV lines), which, combined, give a flux of (2.6 ± 0.4 ± 0.5) × 10−5 ph cm−2 s−1 per line, suggesting a 44Ti yield of (1.5 ± 1.0) × 10−4M. Moreover, I present some preliminary results of Cas A observations by INTEGRAL, which so far has yielded a 3σ detection of the 68 keV line with the ISGRI instrument with a flux that is consistent with the BeppoSAX detections. Future observations by INTEGRAL-ISGRI will be able to constrain the continuum flux above 90 keV, as the uncertainty about the continuum shape, is the main source of systematic error for the 68 and 78 keV line flux measurements. Moreover, with the INTEGRAL-SPI instrument it will be possible to measure or constrain the line broadening of the 1157 keV line. A preliminary analysis of the available data indicates that narrow line emission (i.e., Δv < 1000 km s−1) can be almost excluded at the 2σ level, for an assumed line flux of 1.9 × 10−5 ph cm−2 s−1.  相似文献   

13.
We have successfully detected solar neutrons at ground level in association with the X17.0 solar flare that occurred on 2005 September 7. Observations were made with the solar neutron telescopes and neutron monitors located in Bolivia and Mexico. In this flare, large fluxes of hard X-rays and γ-rays were observed by the GEOTAIL and the INTEGRAL satellites. The INTEGRAL observations include the 4.4 MeV line γ-rays of 12C. The data suggest that solar neutrons were produced at the same time as these hard electromagnetic radiations. We have however found an apparent discrepancy between the observed and the expected time profiles. This fact suggests a possible extended neutron emission.  相似文献   

14.
The absence of a supernova remnant (SNR) shell surrounding the Crab and other plerions (pulsar wind nebulae) has been a mystery for three decades. G21.5-0.9 is a particularly intriguing plerionic SNR in which the central powering engine is not yet detected. Early CHANDRA observations revealed a faint extended X-ray halo which was suggested to be associated with the SNR shell; however its spectrum was non-thermal, unlike what is expected from an SNR shell. On the other hand, a plerionic origin to the halo is problematic since the X-ray plerion would be larger than the radio plerion. We present here our analysis of an integrated 245 ks of archival CHANDRA data acquired with the High-Resolution Camera (HRC) and 520 ks acquired with the Advanced CCD Imaging Spectrometer (ACIS). This study provides the deepest and highest resolution images obtained to date. The resulting images reveal for the first time: (1) a limb-brightened morphology in the eastern section of the halo, and (2) a rich structure in the inner (40″-radius) bright plerion including wisps and a double-lobed morphology with an axis of symmetry running in the northwest–southeast direction. Our spatially resolved spectroscopic study of the ACIS-I data indicates that the photon index steepens with increasing distance from the central point source out to a radius of 40″ then becomes constant at ∼2.4 in the X-ray halo (for a column density NH = 2.2 × 1022 cm−2). No line emission was found from the eastern limb; however marginal evidence for line emission in the halo’s northern knots was found. This study illustrates the need for deep CHANDRA observations to reveal the missing SNR material in Crab-like plerions.  相似文献   

15.
We analyse the 30 October, 2004, X1.2/SF solar event that occurred in AR 10691 (N13 W18) at around 11:44 UT. Observations at 212 and 405 GHz of the Solar Submillimeter Telescope (SST), with high time resolution (5 ms), show an intense impulsive burst followed by a long-lasting thermal phase. EUV images from the Extreme Ultraviolet Imaging Telescope (SOHO/EIT) are used to identify the possible emitting sources. Data from the Radio Solar Telescope Network (RSTN) complement our spectral observations below 15 GHz. During the impulsive phase the turnover frequency is above 15.4 GHz. The long-lasting phase is analysed in terms of thermal emission and compared with GOES observations. From the ratio between the two GOES soft X-ray bands, we derive the temperature and emission measure, which is used to estimate the free-free submillimeter flux density. Good temporal agreement is found between the estimated and observed profiles, however the former is larger than the latter.  相似文献   

16.
W50 remains the only supernova remnant (SNR) confirmed to harbor a microquasar: the powerful enigmatic source SS 433. Our past study of this fascinating SNR revealed two X-ray lobes distorting the radio shell as well as non-thermal X-rays at the site of interaction between the SS 433 eastern jet and the eastern lobe of W50. In this paper we present the results of a 75 ks Chandra ACIS-I observation of the peak of W50-west targeted to: (1) determine the nature of the X-ray emission and (2) correlate the X-ray emission with that in the radio and infrared domains. We have confirmed that at the site of interaction between the western jet of SS 433 and dense interstellar gas the X-ray emission is non-thermal in nature. The helical pattern observed in radio is also seen with Chandra. No correlation was found between the infrared and X-ray emission.  相似文献   

17.
The M1.5-class flare and associated coronal mass ejection (CME) of 16 February 2011 was observed with the Extreme ultraviolet Imaging Spectrometer on board the Hinode spacecraft. Spray plasma associated with the CME is found to exhibit a Doppler blue-shift of 850 km s?1 – one of the largest values reported from spectroscopy of the solar disk and inner corona. The observation is unusual in that the emission line (Fe xii 193.51 Å) is not observed directly, but the Doppler shift is so large that the blue-shifted component appears in a wavelength window at 192.82 Å, intended to observe lines of O v, Fe xi and Ca xvii. The Fe xii 195.12 Å emission line is used as a proxy for the rest component of 193.51 Å. The observation highlights the risks of using narrow wavelength windows for spectrometer observations when observing highly-dynamic solar phenomena. The consequences of large Doppler shifts for ultraviolet solar spectrometers, including the upcoming Multi-slit Solar Explorer (MUSE) mission, are discussed.  相似文献   

18.
Observations and their analysis of the thermal X-ray spectrum of the M2 flare on 2003 April 26 are described. The spectrum observed by the RHESSI mission cover the energy range from ∼5 to ∼50 keV. With its ∼1-keV spectral resolution, intensities and equivalent widths of two line complexes, the Fe line group at 6.7 keV (mostly due to Fe xxv lines and Fe xxiv satellites) and the Fe/Ni line group at 8 keV (mostly due to higher-excitation Fe xxv lines and Ni xxvii lines) were obtained as a function of time through a number of flares. The abundance of Fe can also be determined from RHESSI spectra; it appears to be consistent with a coronal value for at least some times during the flare. Comparisons of RHESSI spectra with those from the RESIK crystal spectrometer on CORONAS-F show very satisfactory agreement, giving much confidence in the intensity calibration of both instruments.  相似文献   

19.
We examined the relation between the evolutions of the H flare ribbons and the released magnetic energiesat a solar flare which occurred on 2001 April 10. This is the first study to evaluate the released energy quantitatively, based on the magnetic reconnection model, and by using the data obtained with the multi wavelength observation. We measured the, photospheric magnetic field strengths and the separation speeds of the fronts of the H flare ribbon, and compared them the nonthermal behaviors observed in HXRs and microwaves. Those nonthermal radiation sources tell us when and where large energy releases occur. Then, by using the photospheric and chromospheric features, we estimated the released magnetic energy at the flare. The estimated energy release rates at the H kernels associated with the HXR sources are locally large enough to explain the difference between the spatial distribution the H kernels and the HXR sources. Their temporal evolution of the energy release rates also shows peaks corresponding to HXR bursts.  相似文献   

20.
The GOES M8.2 flare on 10 April 2002 at 1230 UT was observed at X-ray wavelengths by RHESSI and atmetric/decimetric wavelengths by the Nançay Radioheliograph (NRH). We discuss the temporal evolution of X-ray sources together with the evolution of the radio emission sites observed at different coronal heights by the NRH. While the first strong HXR peak at energies above 50 keV arises from energy release in compact magnetic structures (with spatial scales of a few 104 km) and is not associated with strong radio emission, the second one leads to energy release in magnetic structures with scales larger than 105 km and is associated with intense decimetric/metric and dekametric emissions. We discuss these observations in the context of the acceleration sites of energetic electrons interacting at the Sun and of escaping ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号