首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
三维机织复合材料的细观力学分析   总被引:1,自引:0,他引:1  
建立了一种三维机织复合材料的细观力学模型。模型包括两相:一相为纤维束,另一相为基体材料或横向的纤维束。该模型考虑了纤维束弯曲所引起的附加剪切。讨论了根据织造参数确定机织复合材料细观结构的方法。将上述理论用于一种实际的碳/环氧三维机织复合材料的分析,研究了细观应力分布的特点,并用平均化方法得到了材料宏观的模量,分析结果与试验数据吻合良好。  相似文献   

2.
采用三维实体有限元方法,结合周期性边界条件,研究了三维机织复合材料在经向拉伸和纬向拉伸载荷作用下损伤的起始、扩展直至最终破坏的全过程。分析中抛弃了以往损伤研究中采用的单元消失技术,对破坏的基体单元和纤维束单元均按方向进行刚度折减。制作三维机织拉伸试件并进行了相应的试验,计算结果和试验结果吻合良好,证明了该研究方法的正确性。  相似文献   

3.
三维机织复合材料纱线观测与细观几何模型   总被引:1,自引:0,他引:1  
通过对三维机织复合材料细观切片拍照,追踪材料内部纱线各个截面的形状和形心坐标,从而确定三维机织复合材料纱线真实细观形态和轨迹.并据此建立了一个新的三维机织复合材料几何模型,计算了三维机织复合材料的纤维体积含量.结果表明:该模型能够较好地反映三维机织复合材料内部的真实结构,为建立更精确的力学模型打下基础.  相似文献   

4.
基于周期性边界条件的机织复合材料多尺度分析   总被引:2,自引:0,他引:2  
针对平纹机织复合材料,首先从微观纤维直径尺度,采用三维实体有限元方法计算纤维束的等效性能参数。然后将这些参数代入细观尺度的机织单胞模型中,得到宏观结构的平均弹性常数。在两个尺度有限元的分析中,均摒弃了传统有限元分析中采用的等应力或等应变假设,引入周期性边界条件,同时保证了周期性单胞边界面的应力连续和位移连续。分析结果表明,对于机织周期性单胞,在剪切和拉伸情况下其边界面均不全部保持为平面,纠正了此前认为在拉伸情况下单胞边界面仍保持平面的错误假设。纤维束分析结果与使用实验修正参数的细观力学理论公式结果吻合良好,织物单胞的分析结果也与弯曲层板组合模型结果较为接近,证明了分析方法的正确性。  相似文献   

5.
高强度Kevlar纤维机织织物被广泛应用于发动机机匣包容上,剪切增稠液(Shear thickening fluid,SFT)被发现可以有效增加Kevlar织物的能量吸收能力。通过设计针对单束纤维束的相应加强片与夹具,在MTS材料试验机与霍普金森拉杆上开展室温下的(20℃)力学性能试验,得到单束纯Kevlar纤维与不同浓度STF强化Kevlar的准静态与动态拉伸力学性能。对比分析了准静态与动态试验下织物破坏形态和力学性能的区别,得到STF溶液浓度对弹性模量、应力极限与拉伸强度的影响,为STF增强Kevlar织物的动态响应分析提供参考。  相似文献   

6.
为了研究添加相变微胶囊织物的热特性,基于织物热湿耦舍模型,本文发展了一个新的数学模型.模型考虑了多种相变微胶囊与织物的热传递,纤维的吸湿性/放湿性以及热湿耦合作用.模型方程采用控制体积法进行了求解.数值解与实验结果进行了对比,表明了该模型具有满意精度.模拟了相变材料总合量相同,但相变材料布置方式不同的织物在加热过程中的热特性.结果表明,相变微胶囊及其混合物在织物中的布置方式不同,对织物热特性有重要影响.  相似文献   

7.
夹芯复合材料在受到弯曲、剪切和冲击等载荷作用下易发生脱层损伤。脱层损伤程度与Ⅰ、Ⅱ型断裂韧性密切相关。起圈织物由于在其厚度方向引入环状纤维束,增强了与芯层的结合能力,使其在抗分层方面性能优良。本文主要研究起圈织物泡沫夹芯复合材料的Ⅰ/Ⅱ型界面断裂韧性。根据试验标准分别制作了平纹织物泡沫夹芯复合材料和起圈织物泡沫夹芯复合材料。采用双悬臂梁试验(Double cantilever beam, DCB)和末端缺口挠曲试验(End notch flexure, ENF)对上述试验件的增韧机理进行了研究。研究表明,环状纤维束的引入大大提高了界面性能。起圈结构相较于平纹结构的Ⅰ型断裂韧性GⅠC提高了434%,Ⅱ型断裂韧性GⅡC提高了400%。通过建立有限元模型,采用内聚力模型来描述裂纹的扩展,数值结果与试验结果吻合较好。  相似文献   

8.
分析了12片粘贴泰扶高强复合纤维的钢筋混凝土矩形梁的抗剪性能,并与2片比较梁进行比较,研究该加固技术的抗剪加固效果。确定了纤维粘贴量、包裹方法和剪跨比等因素对钢筋混凝土加固梁抗剪性能的影响程度,提出了抗剪加固设计中的复合纤维设计应变的合理取值、加固设计模型和设计方法。通过非线性计算程序计算验证本文计算公式是合理的、可行的。  相似文献   

9.
基于一种适用于平纹涤纶增强橡胶复合材料的各向异性超弹性本构模型,将应变能分解为橡胶基体应变能、织物纤维拉伸应变能与织物增强橡胶剪切应变能3部分,并根据单轴拉伸试验数据确定了本构模型参数。编写了有限元材料子程序进行仿真分析,并与试验数据对比验证了本构模型的合理性。该模型从宏观出发,能更好地表征复合材料编织物在拉伸过程中由于大变形所引起的非线性各向异性力学行为,具有结果准确、简单实用等优点,为织物增强橡胶复合材料的设计应用提供了理论依据。  相似文献   

10.
植物纤维水泥复合材料复合机理   总被引:6,自引:0,他引:6  
一年生植物纤维水泥复合材料是一种具有广阔应用前景的新型复合材料。它是以一年生植物──农作物秸杆(碎料)为增强纤维,水泥为基体(并起粘结剂作用),经特定工艺成型的复合材料。本文从复合材料力学的观点出发,对这种复合材料的复合机理,包括其增强相、基体相、界面相及其复合效果等方面进行了研究。结果表明:在添加剂的成功使用下,一年生植物纤维和水泥取得了良好的界面复合效果,其主要力学性能已达到或超过了与之相似的木质水泥刨花板。  相似文献   

11.
基于能量等效的2.5维机织复合材料刚度预测   总被引:1,自引:0,他引:1  
提出了用能量等效原理预测2.5维机织复合材料经向拉伸的弹性模量的方法。以2.5维机织复合材料受经向拉伸载荷时经纱的变形为基础,分析了受经向拉伸载荷时2.5维机织复合材料中经纱、纬纱和填充树脂的变形能,利用各组分材料的变形能之和与整体复合材料的变形能相等的原理,推导出2.5维机织复合材料的经向拉伸弹性模量的计算方法。与试验数据对比发现,本文方法对经纬向拉伸弹性模量的预测结果比采用组分材料力学性能体积平均加权的方法更加精确。结果验证了本文方法的合理性,表明本文的计算公式对纬向拉伸时同样适用,并且本文方法所需要的基础参数更容易获得。  相似文献   

12.
用人工神经网络模拟三维编织复合材料的力学性能   总被引:2,自引:0,他引:2  
三维编织复合材料由于其材料结构及编织工艺的复杂性和众多工艺参数的影响,目前尚未建立成熟的力学模型。本文采用人工神经网络BP算法,将编织工艺参数作为人工神经网络的输入,将弹性模量及强度性能作为输出,建立了编织工艺参数与力学性能的人工神经网络关系模型,并讨论了BP算法及网络结构。这种人工神经网络关系模型对于三维编织复合材料的实验、生产和应用。工艺参数的选取以及理论模型的研究都有重要的参考价值。本文最后  相似文献   

13.
节点插值子胞模型是一种通过虚位移原理和代表性体积单元建立宏观和细观应变之间关系的细观力学方法。采用节点插值子胞模型进行二维纺织纤维增强陶瓷基复合材料的力学性能预测。分别建立二维平纹和交叉编织复合材料单胞的细观结构分析模型,分别采用三次B样条和正弦曲线来模拟经纱和纬纱的截面和弯曲形式,并根据纤维和基体中的孔隙含量对其模量进行折减,采用节点插值子胞模型进行宏观力学性能预测,并分析了细观结构参数和纤维体积含量对材料力学性能的影响。节点插值子胞模型的预测结果与有限元法比较表明:采用节点插值子胞模型进行二维平纹和交叉编织陶瓷基复合材料力学性能预测的有效性和可行性。  相似文献   

14.
本文考察了三维编织方法的发展历史及应用背景,针对不同的编织方法,研究了所产生的编织复合材料基本“单胞”结构,以及不同编织参数对复合材料构件基本力学性能的影响,着重比较研究了二步法及四步法所形成构件与层合板构件的结果。采用反射光弹技术考察了编织复合材料的孔边应力集中现象,得到了有益的结果。本文针对三维立体织物的特点,研究使用了RTM成型工艺,得到了较好的编织试验件。  相似文献   

15.
纺织复合材料的细观力学分析通常以胞元模型为基础,胞元边界条件的合理施加是获得精确分析结果的关键之一。本文以平面机织复合材料为例,讨论了细观胞元的选取和周期边界条件的施加方法,在此基础上建立了二维细观有限元模型,通过与全厚度模型分析结果的比较,研究了周期胞元模型的合理性,特别是边界效应和局部损伤等非周期因素对分析结果的影响,给出了这些因素下胞元边界条件的处理方法。  相似文献   

16.
建立了一套飞行器结构多尺度分析方法,能够较为高效、准确地分析飞行器结构的力学行为,确定危险区域以及研究损伤模式。采用层次多尺度法,分别建立了飞行器整体结构、局部舱段结构、单钉连接模型三种有限元模型,对飞行器结构进行分析。建立了宏观变量与细观响应之间的信息传递和反馈。对三向正交碳/碳机织复合材料的宏观刚度和强度性能进行了预测,建立了宏观损伤起始包络线。采用协同多尺度法对单钉连接模型进行渐进损伤分析。研究表明该方法具有良好适用性,能够较为准确地分析结构的损伤模式,为飞行器结构设计提供参考。  相似文献   

17.
A method for predicting effective thermal conductivities(ETCs) of three-dimensional five-directional(3D5D) braided composites is presented. The effective thermal conductivity prediction method contains a digital image processing technology. Multiple scanning electron microscopy(SEM)images of composites are analyzed to obtain actual microstructural features. These actual microstructural features of 3D5D braided composites are introduced into representative volume element(RVE) modeling. Apart from applying actual microstructural features,compression effects between yarns are considered in the modeling of RVE,making the RVE more realistic. Therefore,the ETC prediction method establishes a representative unit cell model that better reflects the true microstructural characteristics of the 3D5D braided composites. The ETCs are predicted with the finite element method. Then thermal conductivity measurements are carried out for a 3D5D braided composite sample.By comparing the predicted ETC with the measured thermal conductivity, the whole process of the ETC prediction method is proved to be effective and accurate,where a relative error of only 2.9 % is obtained.Furthermore,the effects of microstructural features are investigated,indicating that increasing interior braiding angles and fiber fill factor can lead to higher transverse ETCs. Longitudinal ETCs decrease with increasing interior braiding angles,but increase with increasing fiber fill factor. Finally,the influence of variations of microstructure parameters observed in digital image processing are investigated. To explore the influence of variations in microstructural features on variations in predicted ETCs,the actual probability distributions of microstructural features obtained from the 3D5D braided composite sample are introduced into the ETC investigation. The results show that,compared with the interior braiding angle,variations in the fiber fill factor exhibit more significant effects on variations in ETCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号