首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《航空发动机》2009,35(3):F0002-F0002,1-4
2009年4月13日,赵振业院士(上图左)接受了本刊编辑部主任李华文(上图右)的专访。在访谈中,赵院士介绍了应用于WP7、WJ6等发动机压气机叶片和盘的不锈钢GX-8(1Cr12Ni2WMoVnbA)的研制历程,指出该钢的研制融合了西方国家和前苏联合金钢的设计思路,兼具高耐热性和高冲击韧性;介绍了中国第1个航空中温超高强度钢GC-19(38Cr2Mo2VA)的研制历程,指出该钢的应用使得中国制造的飞机后机身构件具有超高强度的设计目标得以实现;介绍了为解决一直困扰中国制造的飞机起落架寿命短的问题而研制的国产300M钢,指出该钢的研制成功使中国飞机起落架用超高强度钢从此走上了双真空高纯熔炼之路,进而使中国飞机起落架从此走上了长寿命、高可靠性之路;最后介绍了中国尚未进行重点研究发展的轴承齿轮钢在国外的研制情况。  相似文献   

2.
本文介绍了高强度钢零件的电镀概要以及防止氢脆的方法,高强度钢是制造喷气飞机起落架的主要构造材料。一、前言喷气飞机起落架的零件通常以抗拉强度140公斤/毫米~2为界线,由超过140公斤/毫米~2SAE4340钢和低于140公斤/毫米~2钢种构成。因为超过140公斤/毫米~2SAE4340钢零件非常  相似文献   

3.
超高强度钢抗拉强度高、韧性好,具有高的比强度、比模量等特点,被广泛应用于航空、航天及国防等领域。超高强度钢是飞机和航空发动机等航空装备的首选材料,代表了一个国家钢铁材料研究和生产的最高水平,是一个国家科技和国防工业发展水平的重要标志。本文介绍了国内外超高强度钢高纯净熔炼技术方面的发展和应用情况,论述了典型超高强度钢的杂质元素如S,P,O和N等的控制水平以及钢中非金属夹杂物控制的研究现状和发展趋势;介绍了作者近年来在超高强度高纯熔炼技术方面的研究进展,其中,杂质元素和非金属夹杂物控制水平有了大幅度的提升,为我国高合金超高强度钢尤其是超高强度不锈轴承齿轮钢的高纯净熔炼开辟了一条新的工艺路线;最后,指出了我国超高强度钢高纯净熔炼技术的发展方向。  相似文献   

4.
本文介绍了国外飞机起落架的材料和制造工艺.如选用高强度钢、铝合金、钛合金等材料和采用整体锻件或拼焊结构.本文重点介绍了美国的闪光对焊;苏联的30XГCHA钢真空电子束焊性能及规范;对氩弧焊、等离子弧焊的应用进行了分析.指出我国起落架制造工艺发展的正确途径.  相似文献   

5.
采用Deform 3D有限元软件对23Co13Ni11Cr3Mo超高强度钢起落架锻造成形过程进行了数值模拟,研究了不同工艺参数对起落架成形的影响。通过锻造成形实验,验证工艺方案的可行性及合理性。研究结果表明:适当增加变形温度,可有效降低材料的变形抗力,增强材料在模腔中的流动性;成形速度影响锻件的变形均匀性,减小成形速度可以改善飞机起落架的性能。  相似文献   

6.
A320系列飞机主起落架外筒是形状不规则零部件,材料为超高强度钢,为难切削加工材料,一些孔径或者孔径的端面出现腐蚀后,需要镗削去除以满足CMM规定的修理要求。为解决此类难加工问题,本文设计了一种通用性强的T型非标BT-50铣刀,操作简单,成本效益高,大大提高了起落架维修能力。  相似文献   

7.
吴成芸 《成飞科技》2006,(3):15-18,28
通过对超高强度钢表面微观结构缺陷的无损检测技术研究,结合我公司某型飞机前起落架外筒在使用过程中所出现的问题,开展巴克豪森方法的实际检测应用,对超高强度结构钢零件表面完整性的检测作了一些有益的研究与探索,并取得了一定的经验。  相似文献   

8.
一、前言起落架通常约占飞机总重的3~5%,但它只承受地面载荷,在飞行中毫无贡献。为减轻结构重量和压缩收藏空间,选用强度高,弹性模量高,价格相对低的超高强度钢就不可避免。目前,起落架已从静强度设计发展为安全寿命设计,选材也从简单的静强度要求提高到对综合力学性能的要求。但在选材和设计中,首先遇到的仍是材料的强度问题,  相似文献   

9.
300M(40CrNi2Si2MOVA)钢制起落架   总被引:2,自引:0,他引:2  
1 300M(40CcrNi2Si2MOVA)钢的特点 300M钢是美国于上世纪50年代初在4340钢基础上添加了1.5%左右的硅而发展起来的新型超高强度钢;是美国目前使用最普遍的飞机起落架用钢.该钢采用双真空冶炼(真空感应熔炼--真空自耗电极重熔)并精选原料,严格控制硫、磷元素含量,目前钢中硫含量已降到30ppm以下,其它有害杂质及气体含量也较低,钢的纯洁度很高.该钢淬透性很高,纵向、横向性能差异小,淬火加低温回火后,强度可达1860MPa以上.  相似文献   

10.
2008年4月16日,宝钢新闻中心透露,大型飞机起落架用300 M超高强钢、四大牌号钛合金结构用钢已由宝钢研制成功,与大飞机项目相关的发动机用特种钢材的研发,也已全面展开。起飞总重量超过100吨的军用、民用大型运输机和150座以上的干线客机,每架需用高温合金、钛合金近100吨,起落  相似文献   

11.
超高强度钢用于我国火箭高强部件,特别是用于固体火箭发动机壳体的研制,已有约二十年的历史。在此期间内,积累了不少经验,也有一些教训。当前,在一定范围内交流超高强度钢应用研究技术经验,推广已取得的科研成果,对已应用的超高强度钢作出评价,提出对近期超高强度钢应用性研究工作的意见,是一项必要而有益的工作。本文简述超高强度钢  相似文献   

12.
介绍了在普通车床上实现300M超高强度钢起落架深孔内键槽的磨削加工技术,重点介绍了磨削动力头的特殊结构设计和双键槽的磨削加工方法。  相似文献   

13.
抗疲劳技术取得新进展由南京航空航天大学机电工程学院王氓教授主持的“超高强度钢内螺纹冷挤压表面改性加工机理”研究项目,日前获得了航空科学基金资助项目优秀成果一等奖。该项研究成果已成功地应用于300M钢起落架的内螺纹抗疲劳制造中,用于孔壁抗疲劳强化的冷挤...  相似文献   

14.
GC-4超高强钢焊接冷裂倾向的评价   总被引:1,自引:0,他引:1  
杨元修  杨汉祥 《航空学报》1987,6(6):314-320
GC-4钢是我国自行研制的一种无Ni低Cr超高强钢,主要用它取代30CrMnSiNi2A钢制造飞机起落架等受力构件。但由于该钢种含碳量高,合金元素多,冷裂倾向较大,使其应用受到限制,因此探明该钢种的冷裂倾向。制定一套合理的焊接工艺,防止冷裂纹的产生。  相似文献   

15.
多电飞机是未来飞机的发展方向,随着飞机电力技术和电力作动部件的发展,起落架系统也逐步朝着多电作动的方向发展。本文介绍了多电技术在现役飞机起落架系统中的应用情况,以及国内外开展的相关研究工作,最后对起落架多电技术的发展提出了几点看法。  相似文献   

16.
吴景福 《推进技术》1982,3(2):61-61
由中国科学院金属研究昕、上海第三钢铁厂,上海第五钢铁厂,上海新力机器厂联合研究、试制的壳体用低合金超高强度钢30Cr3SiNiMoVA已于1981年12月初在福建厦门通过技术鉴定。 壳体用低合金超高强度钢30Cr3SiNiMoVA(以下简称30Cr3钢)是在总结国内外低合金  相似文献   

17.
飞机起落架减震器在气密试验过程中,镀铬的活塞杆经常出现铬层渗气现象,这种现象通常又称为铬层“冒汗”。多年来,由于对铬层渗气产生原因分析不确切、以及补救办法不得当,因此在起落架的生产和修理中始终存在,影响了生产的正常进行,由于活塞杆材料是高强度钢,因多次镀铬返修而造成材料报废。  相似文献   

18.
23Co14Ni12Cr3Mo超高强度钢具有优异的强韧性配合,逐步取代现役的超高强度钢,被广泛地应用于起落架等航空关键承力构件中。研究了23Co14Ni12Cr3Mo超高强度钢的应力腐蚀开裂(SCC)行为,对该材料的安全可靠应用具有重要的意义。采用双悬臂(DCB)试样研究了23Co14Ni12Cr3Mo超高强度钢在3.5%NaCl溶液中的SCC分叉行为,为该材料在航空航天领域安全可靠地使用提供了理论数据。采用扫描电子显微镜(SEM)对试验开裂后的断口形貌进行了表征,采用X射线电子衍射技术(XRD)结合能谱(EDS)技术对腐蚀产物进行分析。结果表明应力腐蚀裂纹扩展分叉,断口形貌在裂纹扩展前期、中期和后期分别为穿晶(TG)形貌、穿晶伴随沿晶(IG)形貌并含有二次微裂纹以及沿晶脆性断裂。该超高强度钢腐蚀产物主要包括Fe、Cr、Co的氧化物,结合Co、Cr、Ni、Mo在应力腐蚀过程中的变化,讨论了裂纹扩展分叉机理。  相似文献   

19.
300M钢起落架深孔及外圆磨削系统通过鉴定南京航空航天大学机械工程系王珉教授等研制完成的300M钢起落架深孔及外圆磨削系统日前通过了由航空工业总公司组织的技术鉴定。该项研究的目的是对新型材料300M高强度钢起落架零件的深孔及外圆实现精密磨削加工,确保...  相似文献   

20.
目前国产飞机起落架使用寿命大多数在500~1000个起落,而国外已达几万个起落。为了提高起落架的使用寿命,我们曾到有关部队和修理厂作了些调查。由于起落架零件结构和形状复杂,造成许多应力集中点,加之起落架零件材料为30CrMnSiA钢和30CrMnSiNi2A钢,对应力集中较为敏感,在应力集中部位容易产生微裂纹和应力腐蚀开裂。某种飞机的起落架断裂竟占60~70%,经对断裂零件的断口进行金相分析,认  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号