首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Knowledge of the elemental composition of the interstellar gas is of fundamental importance for understanding galactic chemical evolution. In addition to spectroscopic determinations of certain element abundance ratios, measurements of the composition of interstellar pickup ions and Anomalous Cosmic Rays (ACRs) have provided the principal means to obtain this critical information. Recent advances in our understanding of particle acceleration processes in the heliosphere and measurements by the Voyagers of the energy spectra and composition of energetic particles in the heliosheath provide us with another means of determining the abundance of the neutral components of the local interstellar gas. Here we compare the composition at the termination shock of six elements obtained from measurements of (a) pickup ions at ~5 AU, (b) ACRs in the heliosphere at ~70 AU, and (c) energetic particles as well as (d) ACRs in the heliosheath at ~100 AU. We find consistency among these four sets of derived neutral abundances. The average interstellar neutral densities at the termination shock for H, N, O, Ne and Ar are found to be 0.055±0.021 cm?3, (1.44±0.45)×10?5 cm?3, (6.46±1.89)×10?5 cm?3, (8.5±3.3)×10?6 cm?3, and (1.08±0.49)×10?7 cm?3, respectively, assuming the He density is 0.0148±0.002 cm?3.  相似文献   

2.
We outline a theory for the origin and acceleration of the fast solar wind as a consequence of network microflares releasing a spectrum of high frequency Alfvén waves which heat (by cyclotron absorption) the corona close to the Sun. The significant features of our model of the fast wind are that the acceleration is rapid with the sonic point at around two solar radii, the proton temperatures are high (~ 5 million degrees) and the minor ions are correspondingly hotter, roughly in proportion to their mass. Moreover we argue that since the energy flux needed to power the quiet corona in closed field regions is about the same as that needed to drive the fast solar wind, and also because at deeper levels (< 2 × 105 K) there is no great difference in the properties of supergranules and network in closed and open field regions, the heating process (i.e., dissipation of high frequency waves) must be the same in both cases. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
The current status of the investigation of the soft X-ray diffuse background in the energy range 0.1–2.0 keV is reviewed. A consistent model, based on the soft X-ray brightness distribution and the energy spectrum over the sky, is derived. The observed diffuse background is predominantly of galactic origin and considered as thermal emission for the most part from a local hot region of temperature ≈106 K which includes the solar system. Several pronounced features of enhanced emission are interpreted in terms of hot regions with temperatures up to 3×106K, some of which are probably old supernova remnants. The properties of the soft X-ray emitting regions are discussed in relation to the observational results on O vi absorption.  相似文献   

4.
Results from a series of SOHO/Coronal Diagnostic Spectrometer (CDS) observations of coronal holes and plumes are presented, including analysis of a low-latitude plume observed in August 1996. Spectroscopic diagnostic techniques using the CHIANTI atomic database are applied to derive the plasma parameters: electron density, temperature, and element abundances. The results are compared with quiet sun values. Coronal electron densities in the holes are found to be about 2 × 108 cm-3, a factor of two to three lower than in the quiet sun. The plasma thermal distribution exhibits differences between coronal holes, the quiet sun and plumes. For example, the peak of the emission in coronal holes is at a lower temperature (T ⋍ 8 × 105 K) than in the quiet sun (T ⋍ 1 × 106 K), while plumes are cooler (T ⋍ 7.6 × 105 K) and show a different distribution, closer to an isothermal state. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Observations of the solar spectrum have been made between 1200–2200 with high spectral resolution. The results were obtained with an all-reflecting echelle spectrograph carried by a stabilized Skylark rocket launched in April 1970. Measurements of the profiles of a number of emission lines due to Siii, Cii, Siiii and Civ formed in the temperature range 104-105 K, indicate ion energies which are considerably in excess of the electron temperatures derived from the ionization balance. Since the ion/electron relaxation time is very short the observed ion energies cannot correspond to an ion temperature and hence a non-thermal mechanical energy component exists in the transition zone.It is postulated that the non-thermal energy component represents the actual mechanical energy responsible for the heating of the corona, and, that, it is propagated as an acoustic wave. On this basis and with a preliminary estimate of the reflection from the transition zone, a flux of 3 × 105 erg cm -2 s -1 is established as entering the corona. This value is in agreement with estimates of the total energy loss from the corona due to conduction, radiation and the solar wind, thus establishing a gross energy balance.Theoretical calculations are currently underway to establish the physical nature of the atmosphere which would result from such a propagating flux. At the present time this has been carried out for an atmosphere in hydrostatic equilibrium and the energy balance equation solved. A preliminary temperature structure which results is shown in Figure 1, together with the derived distribution in electron density. This gives a corona of the right temperature and density but the observed structure deviates in detail from those derived from an analysis of the solar XUV spectrum.  相似文献   

6.
The Suprathermal Electron (STE) instrument, part of the IMPACT investigation on both spacecraft of NASA’s STEREO mission, is designed to measure electrons from ~2 to ~100 keV. This is the primary energy range for impulsive electron/3He-rich energetic particle events that are the most frequently occurring transient particle emissions from the Sun, for the electrons that generate solar type III radio emission, for the shock accelerated electrons that produce type II radio emission, and for the superhalo electrons (whose origin is unknown) that are present in the interplanetary medium even during the quietest times. These electrons are ideal for tracing heliospheric magnetic field lines back to their source regions on the Sun and for determining field line lengths, thus probing the structure of interplanetary coronal mass ejections (ICMEs) and of the ambient inner heliosphere. STE utilizes arrays of small, passively cooled thin window silicon semiconductor detectors, coupled to state-of-the-art pulse-reset front-end electronics, to detect electrons down to ~2 keV with about 2 orders of magnitude increase in sensitivity over previous sensors at energies below ~20 keV. STE provides energy resolution of ΔE/E~10–25% and the angular resolution of ~20° over two oppositely directed ~80°×80° fields of view centered on the nominal Parker spiral field direction.  相似文献   

7.
The major sources of the Soft X-ray Background (SXRB), besides distinct structures as supernovae and superbubbles (e.g. Loop I), are: (i) an absorbed extragalactic emission following a power law, (ii) an absorbed thermal component (~2×106 K) from the galactic disk and halo, (iii) an unabsorbed thermal component, supposedly at 106 K, attributed to the Local Bubble and (iv) the very recently identified unabsorbed Solar Wind Charge-eXchange (SWCX) emission from the heliosphere and the geocorona. We study the SWCX heliospheric component and its contribution to observed data. In a first part, we apply a SWCX heliospheric simulation to model the oxygen lines (3/4 keV) local intensities during shadowing observations of the MBM 12 molecular cloud and a dense filament in the south galactic hemisphere with Chandra, XMM-Newton, and Suzaku telescopes. In a second part, we present a preliminary comparison of SWCX model results with ROSAT and Wisconsin surveys data in the 1/4 keV band. We conclude that, in the 3/4 keV band, the total local intensity is entirely heliospheric, while in the 1/4 keV band, the heliospheric component seems to contribute significantly to the local SXRB intensity and has potentially a strong influence on the interpretation of the ROSAT and Wisconsin surveys data in terms of Local Bubble hot gas temperature.  相似文献   

8.
The variability of the X-ray spectrum of the discrete source Cyg XR-1 (α = 19h 56m δ = +35°.1) is reviewed. The variations observed in the energy region accessible to balloon borne detectors (energies greater than 20 keV) can be explained by assuming them to be caused by the eclipsing properties of a binary system. It is suggested that the system is composed of a source of small angular extent having a spectrum similar to that of a black body at approximately 1.5 × 108 K (kT= 12.5 keV) and a non X-radiating companion which eclipses it at intervals of 2.9850 days. The system would be surrounded by an X-radiating plasma whose photon flux between 1 and 100 keV can be approximated by a power law spectrum whose exponent is — 1.7.  相似文献   

9.
10.
We analyze two situations where coherent properties of Alfvénic perturbations influence the behaviour of a turbulent system. The first case is a coronal loop where large scales are dominated by coherent fluctuations (eigenmodes) excited by resonance with motions at the loop bases. The input energy flux is mainly determined by the zero-frequency eigenmode which is independent of the background Alfvén velocity profile; the resulting scaling law gives values compatible with the flux necessary to sustain the active-region corona. Nonlinear interactions are also influenced by coherence effects. From the resulting nonlinear flux a scaling law for the velocity perturbation is derived, which is compatible with measures of nonthermal velocities in corona. In second case we studied how monochromatic Alfvén waves, propagating upward from the coronal base in a coronal hole region, develop small scales in form of a power-law spectrum when they go across a thin 3D inhomogeneous layer (~104?km thick) located at the base of the corona. Though the obtained spectrum is steeper than what would be obtained by means of nonlinear interactions, it could influence the subsequent nonlinear dynamics of the system by reducing the time of heat deposition, with consequences on the acceleration of the solar wind.  相似文献   

11.
We report spacecraft measurements of the energy spectra of solar protons and other solar energetic particle properties during the 16 Ground Level Events (GLEs) of Solar Cycle 23. The measurements were made by eight instruments on the ACE, GOES, SAMPEX, and STEREO spacecraft and extend from ~0.1 to ~500–700?MeV. All of the proton spectra exhibit spectral breaks at energies ranging from ~2 to ~46?MeV and all are well fit by a double power-law shape. A comparison of GLE events with a larger sample of other solar energetic particle (SEP) events shows that the typical spectral indices are harder in GLE events, with a mean slope of ?3.18 at >40?MeV/nuc. In the energy range 45 to 80?MeV/nucleon about ~50?% of GLE events have properties in common with impulsive 3He-rich SEP events, including enrichments in Ne/O, Fe/O, 22Ne/20Ne, and elevated mean charge states of Fe. These 3He-rich events contribute to the seed population accelerated by CME-driven shocks. An analysis is presented of whether highly-ionized Fe ions observed in five events could be due to electron stripping during shock acceleration in the low corona. Making use of stripping calculations by others and a coronal density model, we can account for events with mean Fe charge states of 〈Q Fe〉≈+20 if the acceleration starts at ~1.24–1.6 solar radii, consistent with recent comparisons of CME trajectories and type-II radio bursts. In addition, we suggest that gradual stripping of remnant ions from earlier large SEP events may also contribute a highly-ionized suprathermal seed population. We also discuss how observed SEP spectral slopes relate to the energetics of particle acceleration in GLE and other large SEP events.  相似文献   

12.
The analysis of data taken by SUMER near disk center, where a small coronal hole is observed in EIT images, is performed. From the measurements of Doppler non-thermal velocities and intensities, we search for the diagnostics and the signature of small scale structures in the coronal hole using transition region lines. Transition region lines in the range of 7 × 104 K to 2.5 × 105 K have a non-thermal velocity excess of 4.0 to 5.5 km s-1 relative to the contiguous quiet Sun. While the average intensity is lower in the coronal hole than in the quiet area, this result shows an increase of turbulence at the base of the high speed solar wind. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
Ion Temperatures as Observed in a Solar Coronal Hole   总被引:1,自引:0,他引:1  
From the widths of the extreme ultraviolet (EUV) lines measured by the SUMER instrument on SOHO, it was found previously (Tu et al. 1998) that the average temperature of Ne+7, at heights (relative to h0) above the southern solar limb from 17″ to 64″, ranges between 1.3 and 5 × 106 K and of Ne+6 between 1 and 4 × 106 K. For mass-per-charge numbers greater than 4 the temperatures of the ions increase slightly with increasing mass-per-charge, while the thermal speed reveals no clear trend. We present a new data set with exposure times much longer than the ones in the previous study. The results obtained from line width analysis of Fe XII (1242 Å), Mg X (1249 Å), Mg VIII (772 Å) Ne VIII (770 Å), and Si VIII (1445 Å) support our previous study. In this case, the trend of increasing temperature begins at a mass-per-charge number of 3. A qualitative explanation based on ion-cyclotron-resonance heating within linear kinetic theory is suggested.  相似文献   

14.
The Hard X-ray Imaging Spectrometer aboard the SMM detected gigantic arches in the corona which are formed or, if preexisting, become excited after major two-ribbon flares. They are seen in 3.5–8 keV X-rays and extend along the H = 0 line to altitudes between 105 and 2 × 105 km. These arches are stationary and form the base of a stationary type I radio noise storm initiated by the flare. They are visible in X-rays for ten hours or more and may be revived, in temperature, density, and brightness, if another two-ribbon flare appears below them. We suggest that they are built-up through reconnection process during the flare from the upper reconnected loops in the Kopp and Pneuman model. These loops become interconnected along the H = 0 line in consequence of great shear of the reconnecting loops. Obviously, the coronal transient associated with such flares must be either accomplished prior to the formation of the arch, or it must be formed through a process different from the Anzer-Kopp-Pneuman mechanism. Striking brightness variations occur quasi-periodically in the corona below and above the arch a few hours after the flare. These variations are seen at about the same time in soft X-rays, hard X-rays, and on centimeter microwaves in the low corona, as well as at metric waves in the type I noise-storm region. In spite of their flare-like intensity, however, the variations have little response in the transition layer (O v line) and no response at all in the chromosphere (Hα). We suggest that these semi-periodic brightenings are due to repetitive acceleration processes in plasmoids that encircle the arch perpendicular to the H = 0 line from the low corona through the noise storm region, being completely detached from the lower atmospheric layers.  相似文献   

15.
We expect a variety of dynamic phenomena in the quiescent non-flaring corona. Plasma flows, such as siphon flows or convective flows of chromospheric material evaporating into the corona, are expected whenever a pressure differences is established either between the footpoints or between the coronal and chromospheric segments of a coronal loop. Such flows can induce phenomena of spatial and temporal brightness variability of the corona. In particular, evaporation induces a net mass input into the corona and consequently coronal density enhancements. Flows are also expected in the regions where energy is released during magnetic reconnection. From the observational point of view the dynamics of the solar atmosphere has been investigated in great detail mostly in the lower transition region with the HRTS, and during flares with theSolar Maximum Mission andYohkoh. The high spectral, temporal and spatial resolution of theSOHO ultraviolet spectrometers should enable us in the near future to fill the gap providing a continuous coverage from the chromosphere to the corona, in the 104–106 K domain, and therefore to best study the dynamics throughout the solar atmosphere.  相似文献   

16.
In the current paradigm for the modulation of galactic cosmic rays (GCRs), diffusion is taken to be the dominant process during solar maxima while drift dominates at minima. Observations during the recent solar minimum challenge the pre-eminence of drift at such times. In 2009, the ~2 GV GCR intensity measured by the Newark neutron monitor increased by ~5% relative to its maximum value two cycles earlier even though the average tilt angle in 2009 was slightly larger than that in 1986 (~20° vs. ~14°), while solar wind B was significantly lower (~3.9 nT vs. ~5.4 nT). A decomposition of the solar wind into high-speed streams, slow solar wind, and coronal mass ejections (CMEs; including post-shock flows) reveals that the Sun transmits its message of changing magnetic field (diffusion coefficient) to the heliosphere primarily through CMEs at solar maximum and high-speed streams at solar minimum. Long-term reconstructions of solar wind B are in general agreement for the ~1900-present interval and can be used to reliably estimate GCR intensity over this period. For earlier epochs, however, a recent 10Be-based reconstruction covering the past ~104 years shows nine abrupt and relatively short-lived drops of B to ?0 nT, with the first of these corresponding to the Spörer minimum. Such dips are at variance with the recent suggestion that B has a minimum or floor value of ~2.8 nT. A floor in solar wind B implies a ceiling in the GCR intensity (a permanent modulation of the local interstellar spectrum) at a given energy/rigidity. The 30–40% increase in the intensity of 2.5 GV electrons observed by Ulysses during the recent solar minimum raises an interesting paradox that will need to be resolved.  相似文献   

17.
Magnetic reconnection is a fundamental plasma physics process in which ideal-MHD??s frozen-in constraints are broken and the magnetic field topology is dramatically re-arranged, which often leads to a violent release of the free magnetic energy. Most of the magnetic reconnection research done to date has been motivated by the applications to systems such as the solar corona, Earth??s magnetosphere, and magnetic confinement devices for thermonuclear fusion. These environments have relatively low energy densities and the plasma is adequately described as a mixture of equal numbers of electrons and ions and where the dissipated magnetic energy always stays with the plasma. In contrast, in this paper I would like to introduce a different, new direction of research??reconnection in high energy density radiative plasmas, in which photons play as important a role as electrons and ions; in particular, in which radiation pressure and radiative cooling become dominant factors in the pressure and energy balance. This research is motivated in part by rapid theoretical and experimental advances in High Energy Density Physics, and in part by several important problems in modern high-energy astrophysics. I first discuss some astrophysical examples of high-energy-density reconnection and then identify the key physical processes that distinguish them from traditional reconnection. Among the most important of these processes are: special-relativistic effects; radiative effects (radiative cooling, radiation pressure, and radiative resistivity); and, at the most extreme end??QED effects, including pair creation. The most notable among the astrophysical applications are situations involving magnetar-strength fields (1014?C1015 G, exceeding the quantum critical field B ??4×1013 G). The most important examples are giant flares in soft gamma repeaters (SGRs) and magnetic models of the central engines and relativistic jets of Gamma Ray Bursts (GRBs). The magnetic energy density in these environments is so high that, when it is suddenly released, the plasma is heated to ultra-relativistic temperatures. As a result, electron-positron pairs are created in copious quantities, dressing the reconnection layer in an optically thick pair coat, thereby trapping the photons. The plasma pressure inside the layer is then dominated by the combined radiation and pair pressure. At the same time, the timescale for radiation diffusion across the layer may, under some conditions, still be shorter than the global (along the layer) Alfvén transit time, and hence radiative cooling starts to dominate the thermodynamics of the problem. The reconnection problem then becomes essentially a radiative transfer problem. In addition, the high pair density makes the reconnection layer highly collisional, independent of the upstream plasma density, and hence radiative resistive MHD applies. The presence of all these processes calls for a substantial revision of our traditional physical picture of reconnection when applied to these environments and thus opens a new frontier in reconnection research.  相似文献   

18.
Using empirical velocity distributions derived from UVCS and SUMER ultraviolet spectroscopy, we construct theoretical models of anisotropic ion temperatures in the polar solar corona. The primary energy deposition mechanism we investigate is the dissipation of high frequency (10-10000 Hz) ion-cyclotron resonant Alfvén waves which can heat and accelerate ions differently depending on their charge and mass. We find that it is possible to explain the observed high perpendicular temperatures and strong anisotropies with relatively small amplitudes for the resonant waves. There is suggestive evidence for steepening of the Alfvén wave spectrum between the coronal base and the largest heights observed spectroscopically. Because the ion-cyclotron wave dissipation is rapid, even for minor ions like O5+, the observed extended heating seems to demand a constantly replenished population of waves over several solar radii. This indicates that the waves are generated gradually throughout the wind rather than propagated up from the base of the corona. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
针对受燃烧室出口高温燃气冲刷的摆盘装置的冷却水回路,建立二维、三维物理仿真模型,模拟了冷却水在内部流道的 流动与换热过程,考察了冷却水进口压力、冷却水流量对流阻和换热性能的影响.结果表明:①摆盘冷却水进口压力由2.3×105Pa提高到8.3×105Pa,摆盘壁温变化微小,结构1壁温升高5K,结构2壁温升高7K;②冷却水进口速度由0.5m/s提高到5.3m/s,结构1壁温降低约120K,结构2壁温降低约100K,冷却效果明显;③结构2通过缩小流道的流通面积,能在更小的冷却水流量的工况下得到更好的换热效果.   相似文献   

20.
The measured D/H ratios in interstellar environments and in the solar system are reviewed. The two extreme D/H ratios in solar system water - (720±120)×10−6 in clay minerals and (88±11)×10−6 in chondrules, both from LL3 chondritic meteorites - are interpreted as the result of a progressive isotopic exchange in the solar nebula between deuterium-rich interstellar water and protosolar H2. According to a turbulent model describing the evolution of the nebula (Drouart et al., 1999), water in the solar system cannot be a product of thermal (neutral) reactions occurring in the solar nebula. Taking 720×10−6 as a face value for the isotopic composition of the interstellar water that predates the formation of the solar nebula, numerical simulations show that the water D/H ratio decreases via an isotopic exchange with H2. During the course of this process, a D/H gradient was established in the nebula. This gradient was smoothed with time and the isotopic homogenization of the solar nebula was completed in 106 years, reaching a D/H ratio of 88×10−6. In this model, cometary water should have also suffered a partial isotopic re-equilibration with H2. The isotopic heterogeneity observed in chondrites result from the turbulent mixing of grains, condensed at different epochs and locations in the solar nebula. Recent isotopic determinations of water ice in cold interstellar clouds are in agreement with these chondritic data and their interpretation (Texeira et al., 1999). This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号