首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A new class of staggered PRF MTI radar processors is developed in this paper. These processors are constrained to achieve a specified value of MTI improvement and, subject to this constraint, minimize variations in processor response as a function of target Doppler frequency. The selection of both filter weights and PRF stagger sequences is discussed and a number of representative designs are presented.  相似文献   

3.
The problem of achieving the optimum moving target indicator (MTI) detection performance in strong clutter of unknown spectrum when the set of data available to the estimation of clutter statistics is small due to a severely nonhomogeneous environment is studied. A new adaptive implementation, called the Doppler domain localized generalized likelihood ratio processor (DDL-GLR), is proposed, and its detection performance is studied in detail. It is shown that the DDL-GLR is a data-efficient implementation of the high-order optimum detector and has several advantages of practical importance over the adaptive processors  相似文献   

4.
The design and implementation of a second-order nonrecursive moving target indication (MTI) radar filter using commercially available charge-transfer devices as delay lines are described. A simple technique is included to compensate for the device charge-transfer in-efficiency and its sensitivity is analyzed. Experimental laboratory tests and results in an operating radar system are reported showing the good performance of the realized MTI radar filter.  相似文献   

5.
Pulse-burst radar attempts to capitalize on the advantages of both low and high PRF radar while minimizing their disadvantages. Optimization procedures are applied to the choice of transmitter signal and receiver weighting. The results are compared to the use of Tschebyscheff transmitter weighting with an optimized receiver. The effects of various design and operational parameters are indicated. The performance of pulse-burst radar is qualitatively compared to that of conventional low and high PRF Doppler radar. It is concluded that pulse-burst radar offers the possibility of achieving a solution to the MTI problem under operational conditions where conventional Doppler radars fail.  相似文献   

6.
Comparison between monostatic and bistatic antenna configurationsfor STAP   总被引:3,自引:0,他引:3  
The unique characteristics of bistatic radar operation on the performance of airborne/spaceborne moving target indicator (MTI) radars that use space-time adaptive processing (STAP) are discussed. It has been shown that monostatic STAP radar has the following properties. 1) For a horizontal flight path and a planar Earth the curves of constant clutter Doppler (isodops) are hyperbolas. 2) For a sidelooking antenna geometry the clutter Doppler is range independent. 3) Clutter trajectories in the cosφ-F plane (F=normalized Doppler) are in general ellipses (or straight lines for a sidelooking array). We demonstrate that these well-known properties are distorted by the displacement between transmitter and receiver in a bistatic configuration. It is shown that even for the sidelooking array geometry the clutter Doppler is range-dependent which requires adaptation of the STAP processor for each individual range gate. Conclusions for the design of STAP processors are drawn  相似文献   

7.
The following topics are discussed in the context of the development of an airborne moving target radar for long range surveillance: US Navy long range shipborne radar; Cadillac I airborne early warning (AEW) radar; Cadillac II airborne early warning (AEW) radar; airborne moving target indicating (AMTI) radar; related post-war radar activities; and the invention of the displaced center antenna. Among the topics studied is the use of a monopulse antenna in an MTI radar to remove the degradation of the MTI caused by rapid scanning of the antenna. A method of using a monopulse antenna for motion compensation in airborne MTI is discussed.<>  相似文献   

8.
The main comment of the above paper [1] is that radar integration after MTI processing is not taken into account. For this reason, its numerical results (and curves) show processing losses much higher than practical values. The latter can be obtained in a relatively easy way by means of a computer simulation of the entire signal processor.  相似文献   

9.
The use of adaptive linear techniques to solve signal processing problems is needed particularly when the interference environment external to the signal processor (such as for a radar or communication system) is not known a priori. Due to this lack of knowledge of an external environment, adaptive techniques require a certain amount of data to cancel the external interference. The number of statistically independent samples per input sensor required so that the performance of the adaptive processor is close (nominally within 3 dB) to the optimum is called the convergence measure of effectiveness (MOE) of the processor. The minimization of the convergence MOE is important since in many environments the external interference changes rapidly with time. Although there are heuristic techniques in the literature that provide fast convergence for particular problems, there is currently not a general solution for arbitrary interference that is derived via classical theory. A maximum likelihood (ML) solution (under the assumption that the input interference is Gaussian) is derived here for a structured covariance matrix that has the form of the identity matrix plus an unknown positive semi-definite Hermitian (PSDH) matrix. This covariance matrix form is often valid in realistic interference scenarios for radar and communication systems. Using this ML estimate, simulation results are given that show that the convergence is much faster than the often-used sample matrix inversion method. In addition, the ML solution for a structured covariance matrix that has the aforementioned form where the scale factor on the identity matrix is arbitrarily lower-bounded, is derived. Finally, an efficient implementation is presented.  相似文献   

10.
In an earlier paper by the author the problem of determining the optimum symmetrical weighting factors for a video MTI radar was discussed. This paper extends this work so as to remove the symmetrical restriction from the problem. In addition, for a staggered pulse system, optimum times of transmission are determined. In the earlier paper a global solution to the restricted optimization problem was achieved. In this paper only a locally optimum solution is achieved for the more general problem.  相似文献   

11.
A distributed radar detection system that employs binary integration at each local detector is studied. Local decisions are transmitted to the fusion center where they are combined to yield a global decision. The optimum values of the two thresholds at each local processor are determined so as to maximize the detection probability under a given probability of false alarm constraint. Using an important channel model, performance comparisons are made to determine the integration loss  相似文献   

12.
A means of optimizing a moving target indicator (MTI) filter for rejecting several types of clutter, which are generated by different mechanisms such as by rain or the ground, is formulated. lt is found that the optimal performance of such a filter depends on the spectral density functions, average radar cross sections, and the relative mean Doppler frequencies of each type of clutter. lt is shown that the optimal improvement factor of such a filter is bounded by the weighted average (weighted in accordance with the radar cross sections of the clutter types) of the improvement factor for the individual clutter type. lt is also shown that the improvement factor of such a filter is a function of the relative mean Doppler frequency f0 between the clutter types. As f0 increases, the performance of the MTI system degrades. The worst improvement factor occurs when f0 is equal to half of the radar pulse-repetition frequency (PRF).  相似文献   

13.
Expressions for moving target indicator (MTI) improvement factor limitation due to pulse repetition frequency (PRF) staggering and loss of target detectability for various values of Doppler frequency in the passband are presented. It is also shown that the product of variance of stagger periods and clutter variance is an important parameter determining the performance of a staggered PRF MTI radar.  相似文献   

14.
15.
16.
《航空学报》1988,9(11):586-590
 一、引言 在中等脉冲重复频率(PRF)工作时,MTI-FFT-CFAR是PD或MTD雷达信号处理器的一种典型结构。Lawrence和Moore对MTD雷达在地杂波和气象杂波背景中的检测性能的计算中,假设了邻近距离单元中的杂波样本是独立同分布的(iid)。而在MTI-FFT-频域单元平均CFAR处理器中,频域单元的杂波样本明显偏离iid假设。门  相似文献   

17.
Previously reported experiments with stereoscopic viewing of high resolution radar pictures demonstrated improvements in detection sensitivity up to 7 dB. This paper presents continued research into automatic algorithmic techniques for employing stereo information. A simple two-stage model for a human observer is proposed, and here we investigate the utility of an existing automatic stereo processor technique in application to radar imagery. It is shown that results obtained with the automatic processor very closely resemble those obtained through actual stereo viewing of radar pictures.  相似文献   

18.
A frequent compromise in the design of long-range search radars has to be made between the maximum unambiguous detection range and the achievable coherent clutter rejection performance. A new class of waveforms is introduced which offers the designer a previously unavailable flexibility in arriving at radar designs with improved clutter rejection without seriously affecting the maximum unambiguous search range. The key to these new waveforms is the recognition that a class of useful N-pulse, nonrecursive, moving target indicator (MTI) canceler designs exists which only requires the radar to transmit a total of N -1 (nonuniformly spaced) pulses.  相似文献   

19.
The loss in output signal-to-noise ratio (SNR) due to amplitude limiting is obtained for a radar circuit consisting of a bandpass limiter, coherent demodulator, matched filter, and moving-target-indicator (MTI) filter. The circuit is used in scanning MTI radars. The tandem connection of the limiter and coherent demodulator is a model for the saturation of the intermediate-frequency (IF) demodulator of an MTI radar. Results on special functions are used to obtain simple formulas for the loss in output SNR relative to a linear IF demodulator when the input SNR is less than -15 dB and the number of hits per 3-dB beamwidth exceeds 15.  相似文献   

20.
Image exploitation technology approaches have generally focused on the detection and spatial analysis of stationary groups of objects on the ground using various sensors. While spatial arrangement is clearly necessary in analyzing military formations, it is usually not sufficient. Typically the arrangement must be examined within some context in order to interpret a pattern of deployment. For moving objects the spatial arrangement of the group relative to the direction of motion is key to recognizing the formation. By examining ground moving target indicator (MTI) radar data over time, motion can be inferred and used to establish a context for interpreting the spatial arrangement of the data. New techniques that exploit the multitemporal nature of MTI data are described. The first is a space-time clustering technique that locates compact groups of objects that persist in time. The technique Is an application of Marr and Hildreth's edge detection methodology to the dual problem of region segmentation, or more accurately, volumetric segmentation of space-time. The second technique is based on the use of the Hough transform for recognizing moving formations such as columns, wedges, and lines abreast by analyzing the shape of clustered MTI detections (specifically the orientation of linear arrangements within the group) with respect to their direction of motion. Preliminary results from simulated MTI data sets are presented  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号