首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 68 毫秒
1.
《Acta Astronautica》2007,60(10-11):865-872
This work provides some important information about control structure interaction (CSI) for a large space structure (LSS) attitude control subsystem (ACS) comprised of thrusters and reaction wheels. The LSS physical model is assumed as a rigid long tubular beam as the main bus with two attached long flexible solar panels. Two thrusters (one at each tip of the LSS) are used for large amplitude maneuvers and the reaction wheels for fine control. Lagrange's formulations for generalized and quasi-coordinates were used to derive the equations of motion. The gravity gradient, the solar pressure and the drag were included in the mathematical model as external perturbations. The assumed modes discretization method has been used to model the solar array elastic displacements so as to obtain a set of ordinary differential equations to describe the LSS motion. Different control strategies were implemented to analyze the CSI for two configurations, fine and coarse control. The MatLab/Simulink platform has been used for the computational simulations. The results are in agreement with the CSI theory in that thruster firings excite the solar panel vibrations and that the elastic vibration is an important issue to be taken into account for LSS ACS performance evaluation for both fine and coarse control. In spite of the CSI the maneuver objectives have been accomplished with results that meet the mission criteria.  相似文献   

2.
金磊  徐世杰 《宇航学报》2007,28(3):566-570
研究以变惯量反作用飞轮作为执行机构的小卫星的大角度姿态机动控制问题。变惯量反作用飞轮是一种新型的动量交换装置,不仅可以通过改变飞轮转速输出力矩,还可以通过改变其转动惯量实现大范围的力矩输出。文中建立了带有变惯量反作用飞轮的星体姿态动力学方程,设计了姿态控制律和飞轮的操纵律。仿真结果表明,与一般反作用飞轮相比,当小卫星大角度机动时变惯量飞轮的转速更不容易饱和,且力矩的输出范围变宽,可以同时满足小卫星高精度稳定和快速大角度姿态机动的双重要求。  相似文献   

3.
轮控小卫星姿态大角度机动递阶饱和控制器设计   总被引:1,自引:0,他引:1  
针对采用反作用飞轮的小卫星姿态大角度机动控制,在反作用轮输出力矩受限、速率饱和的约束条件下,采用递阶饱和方法,即限制卫星每次姿态机动的最大偏差,对姿态偏差进行逐次消除。在毋需获知最优机动轨迹规划的情况下,可用于卫星任意时刻的姿态捕获和机动控制。数学仿真结果表明,本文设计的控制算.去能够实现快速姿态机动任务,具有良好的鲁棒性。  相似文献   

4.
Qinglei Hu   《Acta Astronautica》2009,64(11-12):1085-1108
This paper presents a dual-stage control system design method for the three-axis-rotational maneuver and vibration stabilization of a spacecraft with flexible appendages embedded with piezoceramics as sensors/actuators. In this design approach, attitude control system and vibration suppression were designed separately using lower order model. The design of attitude controller was based on variable-structure control (VSC) theory leading to a discontinuous control law. To accomplish asymptotic attitude maneuvering in the closed-loop system and be insensitive to the interaction of elastic modes in the presence of unknown disturbances/uncertainty and input saturation as well, a switching mechanism is employed to design the attitude controller such that outside the sliding region VSC law with a time-varying sliding surface is implemented and inside the region the VSC law with a linear sliding surface is activated. Furthermore, a hyperbolic tangent function in conjunction with a sharpness function permitted to vary with time according to a set of user-defined parameters is implemented to offset the disadvantages of existing saturation-respecting controller and chattering. In addition, for actively damping the excited elastic vibrations during attitude maneuvering, modal velocity feedback and strain rate feedback control design methods are presented and compared by using piezoelectric materials as additional sensors and actuators bonded on the surface of the flexible appendages. Numerical simulations are performed to show that rotational maneuver and vibration suppression are accomplished in spite of the presence of disturbance torque, parameter uncertainty and control saturation nonlinearity.  相似文献   

5.
为了确保小推力量级电推进器在轨工作的有效性,提出了一种基于MME/KF(Minimum Model Error/Kalman Filter)的电推进器推力在轨标定算法。该算法对推力标定过程为:首先使用飞轮产生一个已知的周期性力矩作用于卫星上,同时姿态控制器发送指令给电推进器来保持卫星的稳定;然后将陀螺仪数据代入MME算法中估计出卫星的角加速度,并利用KF算法实现电推进器在轨标定;最后进行数学仿真。结果表明该算法在常规推力下可以提高在轨标定精度,并且可以实现小推力条件下的在轨标定。  相似文献   

6.
反作用飞轮和磁力矩器是现代小卫星姿态控制的主要执行机构,针对单轴反作用飞轮故障仅能提供两轴控制力矩的情况,提出了一种使用磁力矩器和反作用飞轮进行联合控制的算法。首先推导了一种拟PD姿态控制律,在此基础上提出了剩余两反作用飞轮和磁力矩器的控制力矩分配策略。仿真结果表明,该算法能够在单轴飞轮故障情况下完成小卫星高精度姿态控制任务,延长航天任务寿命,算法鲁棒性好,设计简单且易于在轨实时计算。  相似文献   

7.
Low thrust interplanetary flight is considered. Firstly, the fuel-optimal control is found. Then the angular motion is synthesized. This motion provides the thruster tracking of the required by optimal control direction. And, finally, reaction wheel control law for tracking this angular motion is proposed and implemented. The numerical example is given and total operation time for thrusters is found. Disturbances from solar pressure, thrust eccentricity, inaccuracy of reaction wheels installation and errors of inertia tensor are taken into account.  相似文献   

8.
董朝阳  华莹  陈宇  王青 《宇航学报》2006,27(5):974-978
针对以飞轮为执行机构的空间飞行器进行姿态大角度机动递阶饱和控制。在初始状念任意,反作用轮输出力矩受限、速率饱和约束条件下,提出递阶饱和的变结构机动策略,即针对飞行器的运动学模型,利用飞行器的误差四元数和角速度,通过绕瞬时欧拉轴旋转,引入误差凹元数限幅器,对姿态偏差进行逐次消除,提出了不需事先规划轨迹的绕欧拉轴逐次逼近控制算法。并且引入模糊推理规则来改进递阶饱和变结构控制设计,使得系统轨迹既能快速趋近滑动面又能降低抖振,有效减弱了一般变结构控制律中抖振问题,从而提高了变结构控制律的品质。  相似文献   

9.
以过驱动航天器的推力器控制分配误差最小、推力器负载均衡等为设计目标,构建航天器推力分配混合优化模型,并将其转化为线性规划模型进行求解,提出了一种考虑负载均衡的航天器推力器动态分配算法。该算法在确保分配误差最小前提下,能够降低各推力器的最大分配推力之差,有效均衡各推力器总工作时长和开关次数,进而延长推进系统的整体工作寿命。进一步定义了表征负载均衡性能的推力平衡度和干扰敏感度性能指标,并在此基础上给出了一种分配算法负载均能能力的定量化评价方法。在仿真验证中,采用平衡度和敏感度对算法性能进行定量评估,结果表明该方法在保证控制性能和控制分配误差的前提下,能够有效均衡各推力器最大推力,提高了系统的平衡度和对扰动力矩的鲁棒性。  相似文献   

10.
过驱动航天器飞轮故障重构与姿态容错控制   总被引:1,自引:0,他引:1  
针对四反作用飞轮配置的刚体航天器执行机构故障以及外部干扰等问题,提出一种姿态容错控制分配算法。该方法通过设计滑模观测器,实现在有限时间内对执行机构故障与外部干扰的精确重构;特别地,应用Lyapunov稳定性理论证明了所设计的控制器能够在有限时间内实现对闭环姿态的全局渐近稳定控制,且该控制策略可实现对反作用飞轮故障与外部干扰的鲁棒性。此外,采用计算量较小的基序最优控制分配方法快速实现了期望控制力矩到四反作用飞轮指令控制力矩分配。最后,针对某型号航天器以及各种反作用飞轮故障进行数值仿真,仿真结果表明所设计过驱动航天器飞轮故障重构与姿态容错控制方法能够在线、及时、精准地完成故障重构与控制分配。  相似文献   

11.
This paper describes the attitude control schemes for the various phases such as acquisition, on-orbit, orbit maneuver, de-boost maneuvers and coast phases of the India's first recovery mission Space Capsule Recovery Experiment-I (SRE-1). During the on-orbit phase, the SRE was configured to point the negative roll axis to Sun. The attitude referencing of SRE-1 was based on dry tuned gyros with updates from the attitude determined using on-board Sun sensors and magnetometer. For attitude acquisition, attitude maneuvers and for providing the velocity corrections for de-orbiting operations; a set of eight thrusters grouped in functionally redundant blocks were used. The control scheme with thrusters was based on proportional derivative controller with a modulator. In order to ensure micro-gravity environment during the on-orbit payload operations a linear quadratic regulator (LQR) based control scheme was designed to drive an orthogonal configuration of magnetic torquers which in turn produced three-axis control torque with the interaction of Earth's magnetic field. Proportional derivative control scheme with modulator was designed to track the steering commands during the velocity reduction as well as during the coasting phase of the de-orbiting operations. A novel thruster failure detection, isolation and reconfiguration scheme implemented on-board for the de-orbiting phase is also discussed in this paper.  相似文献   

12.
In this paper, arbitrary rest-to-rest attitude maneuver problems for a satellite using two single-gimbal control moment gyros (2SGCMGs) are considered. Although single-gimbal control moment gyros are configured in the same manner as the traditional pyramid-array CMG, only two CMGs are assumed to be available. Attitude maneuver problems are similar to problems involving two reaction wheels (RWs) from the viewpoint of the number of actuators. In other words, the problem treated herein is a kind of underactuated problem. Although 2SGCMGs can generate torques around all axes, they cannot generate torques around each axis independently. Therefore, control methods designed for a satellite using two reaction wheels cannot be applied to three-axis attitude maneuver problems for a satellite using 2SGCMGs. In this paper, for simplicity, maneuvers around the x- and z-axes are first considered, and then a maneuver around the y-axis due to the corning effect resulting from the maneuver around the x- and z-axes is considered. Since maneuvers around each axis are established by the proposed method, arbitrary attitude maneuvers can be achieved using 2SGCMGs. In addition, the maneuvering angles around the z- and x-axes, which are required in order to maneuver around the y-axis, are analytically determined, and the total time required for maneuvering around the y-axis is then analyzed numerically.  相似文献   

13.
The International Rosetta Mission was launched on 2nd March 2004 on its 10 years journey to comet 67P/Churyumov–Gerasimenko. Rosetta will reach the comet in 2014, orbit it for about 1.5 years down to distances of a few kilometres and deliver the Lander Philae onto its surface.Following the fly-by of Asteroid (21-)Lutetia in 2010, Rosetta continued its travel towards the planned comet encounter in 2014. In this phase Rosetta became the solar-powered spacecraft that reached the largest Sun distances in history of spaceflight, up to an aphelion at 5.3 AU in October 2012. At distances above 4.5 AU the spacecraft's solar generator power is not sufficient to keep all spacecraft systems active. Therefore in June 2011 the spacecraft was spun up to provide gyroscopic stabilisation, and most of its on-board units, including those used for attitude control and communications, were switched off. Over this “hibernation” phase of about 2.5 years the spacecraft will keep a minimum of autonomy active to ensure maintenance of safe thermal conditions.After Lutetia fly-by, flight controllers had to tackle two anomalies that had significant impacts on the mission operations. A leak in the reaction control subsystem was confirmed and led to the re-definition of the operational strategy to perform the comet rendezvous manoeuvres planned for 2011 and 2014. Anomalous jumps detected in the estimated friction torque of two of the four reaction wheels used for attitude control forced the rapid adoption of measures to slow down the wheels degradation. This included in-flight re-lubrication activities and changes in the wheels operational speed regime.Once the troubleshooting of the two anomalies was completed, and the related operational scenarios were implemented, the first large (790 m/s) comet rendezvous manoeuvre was executed, split into several long burns in January and February 2011. The second burn was unexpectedly interrupted due to the anomalous behaviour of two thrusters, causing attitude off-pointing. Flight controllers modified the thrusters operation parameters in the on-board software and managed to re-start the sequence of burns and successfully complete the manoeuvre. After the manoeuvre, preparation for the critical spin-up and hibernation entry activities, planned for June 2011, began.This paper presents the activities carried out on Rosetta in the final year before hibernation entry. The major anomalies and the related troubleshooting and workaround solutions are detailed. Lessons learned from the operation of the first spacecraft operating with solar power at Jupiter-like distances from the Sun are presented and discussed.  相似文献   

14.
针对带有姿控发动机、在大气层外飞行的拦截器,提出了一种模糊姿态控制律。根据姿控发动机布局,给出了发动机开关逻辑表,考虑到姿控机构具有多级控制能力,基于模糊控制的思想,设计了发动机开启方向和数量的切换策略。随后,利用相平面方法分析了该控制律和PD控制律的相似之处,并指出了前者的优越性。最后,对该控制律的控制效果进行了数字仿真。仿真结果表明,该控制律具有抗干扰、动态品质优良、稳态精度高的特点。  相似文献   

15.
本文首先给出了采用姿态角速度和四元数矢量部分表示的姿态动力学模型。然后,构造了一个可逆的全局非线性坐标变换,使得非线性姿态动力学模型与一个具有可控标准形的线性系统等价。进一步的设计了反作用飞轮电机力矩的快速控制规律。给出了机动时间和系统状态的简单计算公式。最后,文中还介绍了数字仿真实例和结果。  相似文献   

16.
磁悬浮动量轮的主动振动控制   总被引:1,自引:0,他引:1  
由于同传统的滚珠轴承动量轮相比 ,磁悬浮动量轮的定子和转子之间没有接触 ,不需要润滑 ,允许高速旋转 ,而且磁悬浮动量轮可以提供框架控制能力 ,因而磁悬浮动量轮被认为是未来高精度航天器姿态控制的理想执行机构。然而尽管与传统动量轮产生干扰力矩的机理不同 ,磁悬动量轮本身还是存在一些振动源。如何消除这些振动源引起的扰动 ,即磁悬浮动量轮的主动振动控制 ,这是将磁悬浮动量轮应用于航天器姿态控制所要解决的主要问题。本文重点对自适应模型跟踪控制方法进行了介绍  相似文献   

17.
A developed method of determination of orbital parameters allows one to estimate, along with orbit elements, some additional parameters that characterize solar radiation pressure and perturbing accelerations due to unloadings of reactiion wheels. A parameterized model of perturbing action of solar radiation pressure on the spacecraft motion is described (this model takes into account the shape, reflecting properties of surfaces, and spacecraft attitude). Some orbit determination results are presented obtained by the joint processing of radio measurements of slant range and Doppler, laser range measurements used to calibrate the radio measurements, optical observations of right ascension and declination, and telemetry data on spacecraft thrusters’ firings during an unloading of reaction wheels.  相似文献   

18.
庞博  李果  黎康  汤亮 《宇航学报》2020,41(4):464-471
针对挠性卫星姿态敏捷机动中,挠性模态和星体转动惯量不确知,进而影响前馈补偿的有效性的问题,提出一种将非线性状态观测器和转动惯量辨识相结合的精确补偿控制方法。证明了一般挠性卫星动力学的非线性项满足Lipschtiz条件,可引入非线性观测器,实现了挠性模态的准确估计。设计了一种基于角速度最优阶拟合的转动惯量校正方法,进一步提高前馈补偿的精度和姿态机动的快速性。数学仿真对比结果表明:本文所提的精确补偿控制方法,能够有效减少挠性附件振动和转动惯量不准确对姿态控制的影响,提高姿态控制的响应速度,满足挠性卫星机动过程的快速性和稳定性,适用于挠性卫星的姿态敏捷机动控制。  相似文献   

19.
为实现失效航天器寿命延长的目的,采用接管控制技术接管失效航天器姿态控制系统。针对姿态机动接管控制中,失效卫星参数不确定和推力器构型矩阵突变的问题,提出一种基于控制系统重构的失效航天器姿态机动接管控制方法。首先采用指令滤波backstepping控制来重构姿态机动接管控制律,并利用Lyapunov方法分析系统稳定性;然后对推力器构型矩阵进行重构;最后考虑燃料消耗和控制输入受限问题,通过基于约束最优二次规划的动态控制分配算法对推力器推力进行控制重分配。采用本文方法实现了对燃料耗尽航天器和部分执行机构失效航天器的姿态机动接管控制。数值仿真证明了该方法的有效性。  相似文献   

20.
The first Korean multi-mission geostationary Earth orbit satellite, Communications, Ocean, and Meteorological Satellite (COMS) was launched by an Ariane 5 launch vehicle in June 26, 2010. The COMS satellite has three payloads including Ka-band communications, Geostationary Ocean Color Imager, and Meteorological Imager. Although the COMS spacecraft bus is based on the Astrium Eurostar 3000 series, it has only one solar array to the south panel because all of the imaging sensors are located on the north panel. In order to maintain the spacecraft attitude with 5 wheels and 7 thrusters, COMS should perform twice a day wheel off-loading thruster firing operations, which affect on the satellite orbit. COMS flight dynamics system provides the general on-station functions such as orbit determination, orbit prediction, event prediction, station-keeping maneuver planning, station-relocation maneuver planning, and fuel accounting. All orbit related functions in flight dynamics system consider the orbital perturbations due to wheel off-loading operations. There are some specific flight dynamics functions to operate the spacecraft bus such as wheel off-loading management, oscillator updating management, and on-station attitude reacquisition management. In this paper, the design and implementation of the COMS flight dynamics system is presented. An object oriented analysis and design methodology is applied to the flight dynamics system design. Programming language C# within Microsoft .NET framework is used for the implementation of COMS flight dynamics system on Windows based personal computer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号