首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the relative position parameters of the chaser are obtained by using the vision measurement and the target departure manoeuvre positions are calculated through the isochronous interpolation method. A guidance algorithm for -V-bar constant thrust departure with consideration of the constraints of field of view and safety distance is investigated. New switching control laws under constant thrust are designed for departure manoeuvres of the chaser. The switching control laws are obtained based on the acceleration sequences and the on time of thrusters in three axes which can be respectively computed by the time series analysis method. The perturbations and fuel consumptions are addressed during the computation of the on time of thrusters.  相似文献   

2.
A new switching control algorithm under constant thrust is designed for the chaser fast flying around the target spacecraft along a specified fly-around trajectory. The switching control laws are obtained based on the acceleration sequences and the on time of thrusters which can be computed by the time series analysis method. The perturbations and fuel consumptions are addressed during the computation of the on time of thrusters. Furthermore, the relative position parameters of the target spacecraft are obtained by using the vision measurement and the target fly-around positions are calculated through the isochronous interpolation method. The change of the relative position and the relative velocity of the chaser during the constant thrust fast fly-around are presented through simulation example. It is proved that, with the switching control laws, the chaser will fast fly around the target spacecraft along the specified fly-around trajectory.  相似文献   

3.
In this paper, the collision avoidance maneuver under the chaser’s thruster failure in radial direction is investigated. First, based on the vision measurement, the relative position parameters of the target spacecraft are obtained and the target maneuvre positions are calculated through the isochronous interpolation method. Then, by using coupling effects, the thrusters working time intervals can be computed by the time series analysis method. The perturbations and fuel consumptions are addressed during the computation of the thrusters working time intervals. Next, the switching control law under constant thrust is designed for active collision avoidance maneuvres along a specified trajectory.  相似文献   

4.
In this paper, the relative position parameters of the target spacecraft are obtained by using the vision measurement and the target maneuver positions are calculated through the isochronous interpolation method. Furthermore, new switch control laws under constant thrust are designed for active collision avoidance maneuver of the chaser along a specified trajectory. The switch control laws are obtained based on the acceleration sequences and the working times of thrusters in three axes which can be respectively computed by the time series analysis method. The perturbations and fuel consumptions are addressed during the computation of the working times.  相似文献   

5.
Constant thrust fuel-optimal control for spacecraft rendezvous   总被引:1,自引:0,他引:1  
In this paper, constant thrust rendezvous is studied and the optimal rendezvous time is calculated by using continuous genetic algorithm. Firstly, the relative position parameters of the target spacecraft are obtained by using the vision measurement and the target maneuver positions are calculated through the isochronous interpolation method. Then, the results of the calculation of constant thrust rendezvous is founded by processing with multivariate linear regression method. Next, a new switching control law is designed based on the thrust acceleration sequence and the on time of thrusters which can be computed by the time series analysis method. The perturbations and fuel consumptions are addressed during the computation of the on time of thrusters.  相似文献   

6.
通过引入基函数的概念,提出了采用遗传编程求解有限推力航天器逼近非合作目标最终逼近段轨迹规划问题的方法。该方法将推力器开关状态定义为基函数,以多个基函数分别乘以开关状态持续时间再求和作为推力器开关的历程函数;将历程函数转换为遗传编程的树型结构,将消耗燃料的质量作为适应度函数,并将规避障碍物和终端逼近精度等约束条件以罚函数的形式添加到适应度函数中;利用遗传编程的模拟自然进化理论的全局寻优机制求解,最终得到最优逼近轨迹方案。某航天器在有限推力下逼近非合作目标的轨迹规划结果表明:整个逼近过程推力器仅开关5次,大大降低了对开关频率的要求,同时,规划结果比采用高斯伪谱法时逼近时间降低了30.09%,燃料消耗降低了4.18%。   相似文献   

7.
对航天器六自由度控制的推力分配问题进行了研究,参考卫星导航系统中几何精度衰减因子(GDOP) 的定义,首次提出了推力器构型燃料消耗因子(FCF)的概念,并将此概念用于定义推力器相对几何关系引起的期望控制量与燃料消耗间的比例关系。通过矩阵理论分析得到了燃料消耗因子随推力器数目增加而减少的结论,并通过仿真计算对结论进行了验证。  相似文献   

8.
The near-range rendezvous problem of two libration point orbit spacecraft in the Earth–Moon system is studied using the terminal sliding mode control which enables a time-fixed process with the flight time prescribed a priori. The underlying dynamics are the full nonlinear equations of motion for a complete Solar System model. For practical purposes, two means of pulse-width pulse-frequency (PWPF) modulation are employed to realize the theoretical continuous control with a series of thrust pulses. Extensive simulations with major errors taken into account show that the sliding mode controller can successfully guide the chaser to a given staging node with the final position and velocity errors, on average, lower than 20 m and 1 mm/s, respectively. Compared with the glideslope guidance previously studied, the proposed approach outperforms the former by saving approximately 50–60% of total delta-v.  相似文献   

9.
The guidance and control strategy for spacecraft rendezvous and docking are of vital importance, especially for a chaser spacecraft docking with a rotating target spacecraft. Approach guidance for docking maneuver in planar is studied in this paper. Approach maneuver includes two processes: optimal energy approach and the following flying-around approach. Flying-around approach method is presented to maintain a fixed relative distance and attitude for chaser spacecraft docking with target spacecraft. Due to the disadvantage of energy consumption and initial velocity condition, optimal energy guidance is presented and can be used for providing an initial state of flying-around approach process. The analytical expression of optimal energy guidance is obtained based on the Pontryagin minimum principle which can be used in real time. A couple of solar panels on the target spacecraft are considered as obstacles during proximity maneuvers, so secure docking region is discussed. A two-phase optimal guidance method is adopted for collision avoidance with solar panels. Simulation demonstrates that the closed-loop optimal energy guidance satisfies the ending docking constraints, avoids collision with time-varying rotating target, and provides the initial velocity conditions of flying-around approach maneuver. Flying-around approach maneuver can maintain fixed relative position and attitude for docking.  相似文献   

10.
随着卫星重力测量技术的突破性进展,对航天器试验环境要求也在不断提高,航天器受到的残余扰动必须尽可能减小。作为中国将来重力场测量卫星备选主推力器的会切场推力器,其推力器的控制精度直接决定了测量的准确性。文章首先通过PID方法设计了位移模式下的无拖曳控制器,该控制器在预估阻力系数、参考质量与卫星本体的位移差、速度差等性能方面有良好的表现,在应对卫星运行时的突发情况时表现出很强的稳定性。但PID参数没有达到最优解,在此基础上对于该模型的控制精度进行优化,用遗传算法对PID控制的参数进行筛选。结果分析表明,会切场推力器的控制精度有所改善,NTW方向上的速度和位移误差均减小;推力阻力和显著减少;控制精度提高,更好地满足使用需求。  相似文献   

11.
The problem of controlling an all-thruster spacecraft in the coupled translational-rotational motion in presence of actuators fault and/or failure is investigated in this paper. The nonlinear model predictive control approach is used because of its ability to predict the future behavior of the system. The fault/failure of the thrusters changes the mapping between the commanded forces to the thrusters and actual force/torque generated by the thruster system. Thus, the basic six degree-of-freedom kinetic equations are separated from this mapping and a set of neural networks are trained off-line to learn the kinetic equations. Then, two neural networks are attached to these trained networks in order to learn the thruster commands to force/torque mappings on-line. Different off-nominal conditions are modeled so that neural networks can detect any failure and fault, including scale factor and misalignment of thrusters. A simple model of the spacecraft relative motion is used in MPC to decrease the computational burden. However, a precise model by the means of orbit propagation including different types of perturbation is utilized to evaluate the usefulness of the proposed approach in actual conditions. The numerical simulation shows that this method can successfully control the all-thruster spacecraft with ON-OFF thrusters in different combinations of thruster fault and/or failure.  相似文献   

12.
The fault tolerance of spacecraft actuators significantly affects the reliability of satellites and the likelihood of successful missions. To enhance the fault tolerance of the actuators, this study derives optimal fault-tolerant configurations of fixed thrusters that maximize the controllability of a fully-actuated or underactuated satellite. The proposed method optimizes thrust and torque directions generated by the thrusters. Thus a cost function in terms of the thruster locations and directions is defined as the summation of the generated control forces and torques with respect to the body-fixed frame. The optimal configuration is obtained by the successive use of an energy potential method that is motivated by Thomson’s problem. Some numerical examples are provided that show the effectiveness of the proposed formulation and optimization method.  相似文献   

13.
场发射电推力器具有几种不同的发射模式,分别产生荷质比不同的带电液滴或带电离子,使得不同模式下推力性能差别显著。针对不同的空间应用,需要设计不同种类的场发射电推力器,使其达到相应的推力参数。为此对场发射电推力器的发射过程展开分析,确定了推力参数的调控方法。首先对场发射电推力器的基本工作原理进行了阐述,并对不同发射模式的基础物理机制进行了分析。在此基础上通过理论计算得出采用不同推进剂可达到不同发射模式这一结论,并最终得出推力器性能参数的调控方法,论证了推力性能受到推进剂种类和发射模式的影响,在离子发射模式下处于高比冲、低推力工况,而液滴发射模式下处于低比冲、高推力工况。此外推力参数还受到供给流量、外加电压等多种因素的影响。在得到推力器参数的调控方法后,设计了一种主动供给型离子液体电推力器,以离子液体EMI BF4作为推进剂,进行了相应的试验研究。通过改变外加电压,实现了对推力器推力性能的调控,证实了此调控方法的可行性。推力器达到的推力范围为1.6~10μN,比冲范围为154~978s。  相似文献   

14.
采用基于电推进的空间运输系统(转移级)完成使命,相对于采用化学推进可节省大量的推进剂,能够显著降低航天器的发射重量或者把更多的有效载荷送达探测目标地。调研了国外大功率电推力器的研究情况,针对近地空间的大功率轨道转移航天器任务需求,给出了电推进系统方案设计,并对采用不同性能指标推力器的多种方案进行对比,得到综合最优的方案。最后针对我国电推进技术发展现状,给出了我国大功率电推力器的关键技术和发展建议。  相似文献   

15.
为了对脉冲等离子体电磁加速机理有清晰的认识,为后续推力器性能的优化和产品的小型化提供理论基础,需要对脉冲等离子体推力器的特性进行数值研究。利用包含电容、电感、平行板电极、等离子体的一维集成电路模型,开展了脉冲等离子体推力器的数值模拟研究。通过改变初始放电电压和电极间距的大小,系统地研究了脉冲等离子体推力器的初始放电电压、电极间距对推力器电磁加速的影响。结果表明,在其他参数不变的情况下,推力器的推力、比冲、元冲量,以及等离子体的密度、温度随推力器初始放电电压的增加而增加;同样,增加电极间距也能够提高推力器的推力、比冲;然而,电极间的阻抗会随电极间距的增加而增加,导致推力器的点火难度也随之增加,因此脉冲等离子体的电极间距存在一个最优值。  相似文献   

16.
在电推力器的广泛应用中,大部分都采用加速正离子的方式产生推力,且需要安装中和器发射电子对喷射出的正离子进行中和,否则会导致航天器自充电,对其通信及电子器件造成损害。因此,中和器的性能成为制约电推力器工作状态和寿命的重要因素。为了克服该缺点,介绍了一种基于同时加速正、负离子的无中和器射频离子推力器,阐述了其结构组成及推进原理,分析了离子-离子的产生、正负离子的加速过程,指出了关键技术包括电负性工质气体放电特性、磁场过滤电子束缚效能,以及可周期性交替加速正、负离子的栅极偏置电压加载方式。分析表明,该推力器在低轨航天器及深空探测器中具有潜在的应用前景。  相似文献   

17.
高比冲霍尔推力器从霍尔推力器研制初期就得到重视,但是与工程应用相关的参数对比、电流变化和振荡特性特的研究较少。通过测量推力器在不同工况下推力大小、电流变化和电流振荡波形,给出了HET 80HP高比冲霍尔推力器的性能特点和启动特性。研究结果表明,HET 80HP高比冲霍尔推力器相对于传统霍尔推力器,在较大流量和较高放电电压工况下具有更好的性能。冷启动时,正常磁场情况下放电电流存在电流尖峰,并且需要较长的时间才能达到相对稳定。不同磁场位形热启动情况下电流的变化过程表明,电流尖峰是否存在主要与磁场位形有关,启动时温度的高低与电流尖峰是否存在没有明显关系。此外,通过对比不同磁场下推力器比冲和平均频率的变化可知,推力器低频振荡平均频率的高低能够较好地反映推力器比冲的大小。  相似文献   

18.
研究了利用电推进系统进行GEO卫星轨道保持问题,给出了一种基于日预报的位置保持策略。首先,根据GEO卫星轨道漂移规律,分析了小推力推进系统每日进行位保的可行性;然后,针对四电推力器配置构型,给出了每日轨道误差、各推力器工作时间与区间的预测方法;进一步,针对给定的定点位置,根据位保效果对电推进安装角进行了优化选择,并研究了推力变化对位保效果和燃料消耗的影响。以东经100°定点为例对所给方法进行了仿真验证,数值结果表明:所给策略可有效用于GEO卫星位置保持。  相似文献   

19.
考夫曼离子推力器因具有高比冲、高效率、长寿命等特点,是应用于航天器电推进类型之一。过去研究主要集中在轴对称柱状结构考夫曼离子推力器,然而对于未来模块化立方体卫星,立方体构型推力器非常适合多推力器的组合、多推力器羽流集中中和,结构紧密并且减少航天器附件。为此,基于自主设计的立方体式考夫曼离子推力器,采用三维数值仿真方法对推力器放电室进行了计算分析,获取了不同阴极极靴内径下推力器放电室磁场分布,对比研究了不同极靴构型下放电室电子密度分布和电子温度分布。结果发现,增大阴极极靴内径使得磁场分布均匀性变差,放电室内壁电子温度升高,电子损耗增大,放电室出口离子密度降低。因此,对于本立方体考夫曼离子推力器,长宽高为15mm×12.5mm×15mm的阴极极靴构型最佳,既可保持较低的壁面电子温度,又有利推力器出口的离子均匀性。  相似文献   

20.
A design technique for a near optimal, Earth–Moon transfer trajectory using continuous variable low thrust is proposed. For the Earth–Moon transfer trajectory, analytical and numerical methods are combined to formulate the trajectory optimization problem. The basic concept of the proposed technique is to utilize analytically optimized solutions when the spacecraft is flying near a central body where the transfer trajectories are nearly circular shaped, and to use a numerical optimization method to match the spacecraft’s states to establish a final near optimal trajectory. The plasma thruster is considered as the main propulsion system which is currently being developed for crewed/cargo missions for interplanetary flight. The gravitational effects of the 3rd body and geopotential effects are included during the trajectory optimization process. With the proposed design technique, Earth–Moon transfer trajectory is successfully designed with the plasma thruster having a thrust direction sequence of “fixed-varied-fixed” and a thrust acceleration sequence of “constant-variable-constant”. As this strategy has the characteristics of a lesser computational load, little sensitivity to initial conditions, and obtaining solutions quickly, this method can be utilized in the initial scoping studies for mission design and analysis. Additionally, derived near optimal trajectory solution can be used as for initial trajectory solution for further detailed optimization problem. The demonstrated results will give various insights into future lunar cargo trajectories using plasma thrusters with continuous variable low thrust, establishing approximate costs as well as trajectory characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号