首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
高科  宋佳  艾绍洁  刘羿杰 《宇航学报》2020,41(11):1418-1423
针对高超声速飞行器(HSV)再入过程中强非线性、强耦合、气动参数变化剧烈的不确定性的特点,提出一种基于线性二次型调节器(LQR)和自抗扰控制(ADRC)的高超声速飞行器再入段的姿态控制方法。首先,建立高超声速飞行器再入段线性化模型,并采用LQR方法完成了状态反馈控制律设计。然后,结合自抗扰控制技术,设计了扩张状态观测器(ESO)对系统的模型不确定性和外部干扰进行补偿,大幅增强了系统的扰动抑制能力。最后,将得到的高超声速飞行器再入段LQR自抗扰姿态控制器(LQRADRC)应用于高超声速飞行器六自由度仿真,仿真结果表明本文所提出的控制方法能够快速、精确地跟踪角位置指令,并且对系统不确定性具有强鲁棒性。  相似文献   

2.
耿洁  刘向东  盛永智  丛炳龙 《宇航学报》2013,34(9):1215-1223
针对飞行器再入段的姿态跟踪控制问题,提出了一种最优自适应积分滑模控制(Optimal Adaptive Integral Sliding Mode Control, OAISMC)方法。首先针对飞行器的标称模型设计了基于状态相依黎卡提方程(State Dependent Riccati Equation, SDRE)的姿态控制器,使标称系统的性能满足提出的最优指标。然后,考虑系统的不确定性和外部干扰,在SDRE标称控制器的基础上设计积分滑模姿态控制方法,使系统在满足性能指标要求的同时,对不确定性和干扰具有鲁棒性。进一步采用自适应方法调整切换增益,避免了对复合干扰上界的先验要求,并引入滑模干扰观测器提高系统的性能。最后,仿真结果表明,在考虑外部干扰以及气动系数和大气密度摄动的情况下,本文设计的控制方法不仅能够实现姿态跟踪、满足设计的性能指标,而且具有较好的鲁棒性。  相似文献   

3.
针对执行机构故障下的运载火箭姿态指令跟踪问题,在考虑内部未建模动态、外部不确定干扰等因素的影响下,设计了一种基于新型扩张状态观测器(ESO)的自适应滑模容错控制器。首先,基于一种新型级联降阶扩张状态观测器,对系统的未建模动态、外部干扰等不确定性进行估计。在此基础上,结合滑模控制理论,设计了一种固定时间收敛的自适应滑模控制律,能够获得观测器干扰估计误差的上界信息,同时消除滑模控制的抖振现象。通过李雅普诺夫方法证明了闭环系统的稳定性。仿真结果表明,所提出的基于新型扩张状态观测器的自适应滑模容错控制器在执行机构故障情况下仍具有较好的跟踪性能和抗扰能力。  相似文献   

4.
针对重复使用运载器(RLV)再入段的姿态控制问题,设计一种具有自主学习干扰观测器(SLDO)的滑模控制器。基于奇异摄动理论及时标分离原则,将RLV的姿态动力学方程划分为外环和内环子系统。根据RLV再入段模型不确定性和外部干扰均随时间变化、不可忽略且无法预知边界等特点,结合2型模糊神经结构、误差反馈学习架构以及滑模控制(SMC)理论,提出一种新型在线自主学习干扰观测器。设计基于SLDO驱动的多元超螺旋滑模控制器,完成对再入段姿态的跟踪。最后,针对6自由度RLV模型进行了仿真分析,仿真结果证明了控制方法的有效性以及鲁棒性。  相似文献   

5.
根据高超声速飞行器的姿态动力学方程,给出一个可面向姿态角速度镇定的非线性设计模型.针对一类非线性系统,提出一种基于扩张状态观测器(ESO)的鲁棒动态逆设计方法,并将其应用于高超声速飞行器姿态角速度的渐近镇定中.仿真结果表明,相比传统的动态逆控制方案,本文所提出的控制方案可保证飞行器姿态角速度得到快速镇定,并且具备针对模型不确定和结构干扰力矩的强鲁棒性能.  相似文献   

6.
针对升力式再入飞行器飞行过程中非线性、强耦合、快时变特性和外界干扰给姿态控制系统带来的挑战,提出了一种基于微分平坦的鲁棒姿态控制一体化设计方法。首先建立了升力式再入飞行器的姿态运动非线性数学模型,证明了该模型具有微分平坦性质。基于系统的平坦特性,通过微分同胚变换将模型转化为积分串联形式。在此基础上整体设计姿态控制器,实现姿态控制的一体化设计,相对于传统的时标分离方法,能更大限度地利用系统的性能,达到更好的控制效果,同时简化控制器设计过程,提高控制器设计效率。将非线性、强耦合、快时变造成的系统不确定项和外界干扰视为总扰动,设计了基于扩张状态观测器的补偿器,对总扰动进行动态观测并在控制器中实时补偿。仿真结果表明,提出的方法具有良好的姿态跟踪性能和较强的鲁棒性。  相似文献   

7.
分析了影响高超声速飞行器姿态运动的关键要素和不确定性,提出了包括动压关联输出变换、非线性黄金分割自适应控制律Ⅲ、积分器以及可选择的前馈控制在内的一种高超声速飞行器姿态控制新方案,解决了飞行过程中气动动压快速变化对姿态控制系统稳定性和控制精度影响的问题,提高了系统对关键参数不确定性如气动参数偏差、气动阻尼系数偏差、大气密度偏差、惯量偏差以及初始条件偏差的鲁棒性和适应性;所提方案用于高超声速飞行器再入过程高度、速度快速变化导致动压急剧变化的下压段的姿态控制系统设计中。仿真结果表明,在标称和多种偏差组合条件下,性能指标满足要求,控制量满足约束条件。  相似文献   

8.
含扩张状态观测器的高超声速飞行器动态面姿态控制   总被引:2,自引:0,他引:2  
针对高超声速飞行器复杂非线性、高不确定性和强通道耦合等特点,提出了一种飞行器姿态控制的非线性设计方法。根据高超声速飞行器无动力飞行的姿态运动方程组,给出一个可面向姿态控制的非线性设计模型。针对一类非线性系统,提出了一种基于扩张状态观测器(ESO)的动态逆设计方法,并通过动态面控制理论,将其应用于高超声速飞行器的三通道姿态控制中。仿真结果表明,相比基于传统动态逆的动态面控制方案,本文所提出的控制方案可以保证飞行器快速、精确地跟踪角位置指令,并且具备针对系统不确定性的强鲁棒性能。  相似文献   

9.
组合体航天器有限时间超螺旋反步姿态控制   总被引:1,自引:0,他引:1  
针对服务航天器与非合作空间目标构成的组合体航天器的姿态控制问题,提出一种基于干扰观测器的有限时间控制策略。首先,设计一种改进的超螺旋干扰观测器对由非合作目标导致的较大转动惯量不确定性及外界干扰进行观测,并分析了观测误差的有限时间收敛特性;然后,结合反步法设计了有限时间姿态控制器,同时引入指令滤波器提高了反步法的控制性能;最后,通过数值仿真校验了所提算法的有效性。  相似文献   

10.
针对高超声速飞行器再入过程的姿态跟踪要求,提出了基于扩张状态观测器(ESO)的模糊自适应姿态控制策略。在反步法框架下,对于姿态角动态,采用模糊自适应在线逼近耦合不确定性。为减轻计算负担,设计ESO在线观测角速率动态中由于参数摄动和输入扰动引起的综合不确定项。为避免反步控制的"微分爆炸"现象,使用动态面方法设计姿态控制器。基于Lyapunov理论的稳定性分析,证明了闭环控制系统是半全局一致最终有界的。仿真结果表明,该方法对于高超声速飞行器姿态角信号指令具有良好的跟踪性能。  相似文献   

11.
基于反馈线性化的动能拦截器姿态控制研究   总被引:6,自引:0,他引:6  
王庆超  李达 《宇航学报》2005,26(3):358-361,367
动能拦截器进入末制导阶段时经常需要进行大角度姿态机动,这时拦截器姿态控制系统具有非线性、强耦合、多输入多数出(MIMO)的特点。现针对动能拦截器模型的非线性和不确定性,提出PID神经网络自适应逆控制方法对拦截器飞行姿态进行控制。首先基于精确反馈线性化方法将系统解耦成三个独立的子系统,然后应用基于PID神经网络的自适应逆控制方法分别设计每个子系统的姿态控制器。该方法将PID神经网络控制与自适应逆控制相结合,对于拦截器姿态控制系统中的建模误差以及外部干扰具有较强的适应能力。仿真结果证明了该方法的有效性。  相似文献   

12.
航天器姿态的非线性鲁棒分散控制器设计   总被引:3,自引:2,他引:3  
研究了具有外部干扰力矩及参数不确定性的航天器姿态控制问题。针对这类多输入-多输出的不确定非线性系统,基于一种非线性鲁棒分散控制理论,设计了结构简单而易于实现的控制器。该控制器中包含的积分环节可以补偿系统的各种未知因素,同时确保恒值调节系统不存在稳态误差。仿真结果表明:所设计的鲁棒分散控制器与非线性动态逆控制器相比,具有更优越的抗干扰能力和对模型不确定的适应能力。即使系统存在外部干扰及模型小确定性,仍可在闭环系统中实现精确的姿态控制。该控制器有效地提高了航天器姿态控制的鲁棒性和适应性。  相似文献   

13.
再入飞行器大攻角飞行时,会造成方向舵失效,且较小的滚转角速度,就可能导致舵偏指令饱和,对此,本文设计了一种在方向舵失效情况下的抗饱和姿态控制律。该控制律首先基于时标分离假设,将再入飞行器大攻角飞行时的姿态运动模型分解成快、慢回路子系统,然后采用新型的高阶滑模控制律,设计出了一种有限时间收敛且连续可导的慢回路控制器;针对快回路子系统,结合分层滑模控制理论和自适应控制理论,设计了具有抗输入饱和功能的自适应分层滑模控制器。对以上控制器进行仿真验证,结果表明该控制律在大攻角飞行造成偏航舵失效情况下,具有良好的抗饱和姿态控制能力。  相似文献   

14.
高超飞行器的再入非线性动力学模型具有参数不确定性和外部干扰,针对这种情况基于奇异摄动理论提出了鲁棒内环外环解耦控制方案.控制系统的外环基于自适应模型参考设计简单解析的虚拟控制律,实现二阶模型动态跟踪气流系角,抑制三通道运动耦合和干扰的影响,避免了在线实时求逆计算.强耦合的内环采用动态逆跟踪虚拟的角速度指令,期望动力学采用PI形式抑制干扰和不确定性,并基于模型预测控制策略解决辅助轨迹线性化的时变控制器设计和输入约束,提高内环的鲁棒跟踪性能.最后,通过仿真验证了所提算法的有效性.  相似文献   

15.
提出一种新的模糊鲁棒跟踪控制方法,并应用于研究空天飞行器(ASV)再入段姿态角的跟踪问题。基于ASV再入段存在外界干扰的不确定姿态动态系统的T-S模糊模型,考查姿态角跟踪误差,引入模糊前馈,得出跟踪误差指数稳定的约束条件,并在镇定控制是前馈控制的先决条件的前提下,研究了模糊前馈跟踪控制器和具有η衰减率的模糊镇定控制器的设计问题,基于Matlab的LMI(linear matrix inequalities)和FLC(fuzzy logic control)工具可实现此问题的求解。仿真结果验证了算法的有效性。  相似文献   

16.
针对再入飞行器姿态控制问题,应用自适应动态规划(ADP)理论设计了姿态控制器。将再入飞行器的姿态控制建模为非线性系统的最优控制问题,提出单网络积分型强化学习(SNIRL)算法进行求解,该算法简化了积分型强化学习(IRL)算法在迭代计算中的执行-评价双网络结构,只需要采用评价网络估计值函数就可以求得最优控制律,其收敛性得到了理论证明。基于SNIRL算法设计了自适应最优控制器,并证明了闭环系统的稳定性。通过数值仿真校验了SNIRL算法比IRL算法计算效率更高,收敛速度更快,并校验了自适应最优姿态控制器的有效性 。  相似文献   

17.
本文针对柔性航天器在惯性参数未知、外界干扰、输入饱和等复杂条件下的姿态控制问题,提出了1种基于神经网络干扰观测器的柔性航天器姿态稳定控制方法。首先,基于包含压电振动抑制输入的柔性航天器姿态动力学模型,构建了包含外界干扰、惯性参数不确定性的综合扰动项;其次,基于RBF神经网络设计干扰观测器与自适应参数调节律实时地估计综合扰动;再次,设计了1种固定时间收敛且有限时间稳定的非线性滑模控制器,并通过Lyapunov理论进行了稳定性分析;最后,利用航天器闭环姿态动力学系统进行数值仿真。结果表明:所设计的基于神经网络干扰观测器的控制方法可以有效实现航天器的姿态稳定、振动抑制与干扰估计,从而顺利完成航天器的高精高稳控制任务。  相似文献   

18.
针对可重复使用运载器(RLV)再入段的姿态控制问题,提出了一种基于神经网络的有限时间自适应姿态跟踪控制方法。首先,在传统RLV建模的基础上将模型不确定性、耦合及扰动力矩分离作为复合扰动;然后,利用径向基神经网络(RBFNN)对其在线估计并在标称控制器中进行动态前馈补偿;最后,利用终端吸引子改进控制器实现了对期望状态的有限时间跟踪,并通过引入鲁棒项降低了RBFNN估计误差对控制精度的影响。设计的姿态控制器无需获知精确的气动数据与扰动范围而仅需某飞行状态下的标称值。仿真结果表明提出的控制方法对RLV再入姿态跟踪具有较好的控制效果。  相似文献   

19.
针对再入飞行器初始再入段的发动机反作用控制系统(RCS)控制精度问题,提出了一种新型发动机控制方法。首先,将飞行器模型分为慢回路和快回路分别进行控制器设计,采用非线性干扰观测器(DOB)来获取不确定项的估计值,并使用反演法及滑模控制方法设计了飞行器的慢回路和快回路控制律;其次,采用线性规划方法来获取最优RCS指令分配方案;在此基础上,对传统PWPF调制器进行改进,提出了积分补偿型PWPF调制器(IPWPF),采用描述函数法证明了该IPWPF的调制稳定性;最后,通过仿真验证了该方法相比于传统的控制方法具有较高的控制精度。  相似文献   

20.
新型高超声速飞行器耦合姿态控制系统设计   总被引:1,自引:0,他引:1  
针对具有强耦合和强不确定性特点的高超声速飞行器控制问题,提出一种考虑耦合特性的新型鲁棒姿态控制律。首先,建立高超声速飞行器的姿态动力学方程,并基于反步法思想转化为误差动态模型;然后结合干扰观测器提出基于耦合特性的飞行器鲁棒控制方法,并设计滑模补偿项保证姿态角渐近收敛到跟踪指令;最后基于绝对误差积分(IAE)指标从理论上证明本文方法相对于未考虑耦合特性的方法具有更好的动态性能。本文提出的控制方法不仅保证系统渐近稳定性和强鲁棒性,而且将耦合特性考虑进控制器设计中,进而提升了系统的动态性能。数值仿真考虑气动参数拉偏以及实际的执行机构幅值和速率限制,仿真结果校验了本文控制系统设计的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号