首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The current state of knowledge of the Venusian clouds is reviewed. The visible clouds of Venus are shown to be quite similar to low level terrestrial hazes of strong anthropogenic influence. Possible nucleation and particle growth mechanisms are presented. The Pioneer Venus experiments that emphasize cloud measurements are described and their expected findings are discussed in detail. The results of these experiments should define the cloud particle composition, microphysics, thermal and radiative heat budget, rough dynamical features and horizontal and vertical variations in these and other parameters. This information should be sufficient to initialize cloud models which can be used to explain the cloud formation, decay, and particle life cycle.  相似文献   

2.
3.
From the discovery that Venus has an atmosphere during the 1761 transit by M. Lomonosov to the current exploration of the planet by the Akatsuki orbiter, we continue to learn about the planet’s extreme climate and weather. This chapter attempts to provide a comprehensive but by no means exhaustive review of the results of the atmospheric thermal structure and radiative balance since the earlier works published in Venus and Venus II books from recent spacecraft and Earth based investigations and summarizes the gaps in our current knowledge. There have been no in-situ measurements of the deep Venus atmosphere since the flights of the two VeGa balloons and landers in 1985 (Sagdeev et al., Science 231:1411–1414, 1986). Thus, most of the new information about the atmospheric thermal structure has come from different remote sensing (Earth based and spacecraft) techniques using occultations (solar infrared, stellar ultraviolet and orbiter radio occultations), spectroscopy and microwave, short wave and thermal infrared emissions. The results are restricted to altitudes higher than about 40 km, except for one investigation of the near surface static stability inferred by Meadows and Crisp (J. Geophys. Res. 101:4595–4622, 1996) from 1 \(\upmu\)m observations from Earth. Little information about the lower atmospheric structure is possible below about 40 km altitude from radio occultations due to large bending angles. The gaps in our knowledge include spectral albedo variations over time, vertical variation of the bulk composition of the atmosphere (mean molecular weight), the identity, properties and abundances of absorbers of incident solar radiation in the clouds. The causes of opacity variations in the nightside cloud cover and vertical gradients in the deep atmosphere bulk composition and its impact on static stability are also in need of critical studies. The knowledge gaps and questions about Venus and its atmosphere provide the incentive for obtaining the necessary measurements to understand the planet, which can provide some clues to learn about terrestrial exoplanets.  相似文献   

4.
The heating of the upper atmospheres and the formation of the ionospheres on Venus and Mars are mainly controlled by the solar X-ray and extreme ultraviolet (EUV) radiation (λ = 0.1–102.7 nm and can be characterized by the 10.7 cm solar radio flux). Previous estimations of the average Martian dayside exospheric temperature inferred from topside plasma scale heights, UV airglow and Lyman-α dayglow observations of up to ∼500 K imply a stronger dependence on solar activity than that found on Venus by the Pioneer Venus Orbiter (PVO) and Magellan spacecraft. However, this dependence appears to be inconsistent with exospheric temperatures (<250 K) inferred from aerobraking maneuvers of recent spacecraft like Mars Pathfinder, Mars Global Surveyor and Mars Odyssey during different solar activity periods and at different orbital locations of the planet. In a similar way, early Lyman-α dayglow and UV airglow observations by Venera 4, Mariner 5 and 10, and Venera 9–12 at Venus also suggested much higher exospheric temperatures of up to 1000 K as compared with the average dayside exospheric temperature of about 270 K inferred from neutral gas mass spectrometry data obtained by PVO. In order to compare Venus and Mars, we estimated the dayside exobase temperature of Venus by using electron density profiles obtained from the PVO radio science experiment during the solar cycle and found the Venusian temperature to vary between 250–300 K, being in reasonable agreement with the exospheric temperatures inferred from Magellan aerobraking data and PVO mass spectrometer measurements. The same method has been applied to Mars by studying the solar cycle variation of the ionospheric peak plasma density observed by Mars Global Surveyor during both solar minimum and maximum conditions, yielding a temperature range between 190–220 K. This result clearly indicates that the average Martian dayside temperature at the exobase does not exceed a value of about 240 K during high solar activity conditions and that the response of the upper atmosphere temperature on Mars to solar activity near the ionization maximum is essentially the same as on Venus. The reason for this discrepancy between exospheric temperature determinations from topside plasma scale heights and electron distributions near the ionospheric maximum seems to lie in the fact that thermal and photochemical equilibrium applies only at altitudes below 170 km, whereas topside scale heights are derived for much higher altitudes where they are modified by transport processes and where local thermodynamic equilibrium (LTE) conditions are violated. Moreover, from simulating the energy density distribution of photochemically produced moderately energetic H, C and O atoms, as well as CO molecules, we argue that exospheric temperatures inferred from Lyman-α dayglow and UV airglow observations result in too high values, because these particles, as well as energetic neutral atoms, transformed from solar wind protons into hydrogen atoms via charge exchange, may contribute to the observed planetary hot neutral gas coronae. Because the low exospheric temperatures inferred from neutral gas mass spectrometer and aerobraking data, as well as from CO+ 2 UV doublet emissions near 180–260 nm obtained from the Mars Express SPICAM UV spectrograph suggest rather low heating efficiencies, some hitherto unidentified additional IR-cooling mechanism in the thermospheres of both Venus and Mars is likely to exist. An erratum to this article can be found at  相似文献   

5.
As an introduction to the remaining papers in this issue, a summary is given of our current knowledge of Venus, with emphasis on recent progress and on the contributions to be expected from the Pioneer Venus missions. Headings are surface and interior, clouds and lower atmosphere, dynamics and thermal structure, neutral upper atmosphere, and ionosphere and solar-wind cavity.  相似文献   

6.
Present ideas about the surface and interior of Venus are based on data obtained from (1) Earth-based radio and radar: temperature, rotation, shape, and topography; (2) fly-by and orbiting spacecraft: gravity and magnetic fields; and (3) landers: winds, local structure, gamma radiation. Surface features, including large basins, crater-like depressions, and a linear valley, have been recognized from recent ground-based radar images. Pictures of the surface acquired by the USSR's Venera 9 and 10 show abundant boulders and apparent wind erosion.On the Pioneer Venus 1978 Orbiter mission, the radar mapper experiment will determine surface heights, dielectric constant values and small-scale slope values along the sub-orbital track between 50°S and 75°N. This experiment will also estimate the global shape and provide coarse radar images (40–80 km identification resolution) of part of the surface. Gravity data will be obtained by radio tracking. Maps combining radar altimetry with spacecraft and ground-based images will be made. A fluxgate magnetometer will measure the magnetic fields around Venus.The radar and gravity data will provide clues to the level of crustal differentiation and tectonic activity. The magnetometer will determine the field variations accurately. Data from the combined experiments may constrain the dynamo mechanism; if so, a deeper understanding of both Venus and Earth will be gained.  相似文献   

7.
Venus lightning     
Although it is not unanimously accepted, many independent observations lead to the conclusion that lightning is prevalent on Venus. The electromagnetic signals detected by all 4 Venera landers are most readily explained as generation by lightning. The Venera 9 spectrometer appears to have observed a lightning storm on one occasion. The Pioneer Venus plasma wave instrument detects waves both below the electron gyrofrequency that may be due to lightning and signals above the electron gyrofrequency but at very low altitudes that may be due to the near field of the lightning. The VLF observations suggest that Venus lightning must be an intra-cloud phenomenon which is most frequent in the afternoon and evening sector. The occurrence rate is likely to be greater than on Earth.  相似文献   

8.
Current knowledge of the temperature structure of the atmosphere of Venus is briefly summarized. The principal features to be explained are the high surface temperature, the small horizontal temperature contrasts near the cloud tops in the presence of strong apparent motions, and the low value of the exospheric temperature. In order to understand the role of radiative and dynamical processes in maintaining the thermal balance of the atmosphere, a great deal of additional data on the global temperature structure, solar and thermal radiation fields, structure and optical properties of the clouds, and circulation of the atmosphere are needed. The ability of the Pioneer Venus Orbiter and Multiprobe Missions to provide these data is indicated.  相似文献   

9.
This is a review of current knowledge about Earth’s nearest planetary neighbour and near twin, Venus. Such knowledge has recently been extended by the European Venus Express and the Japanese Akatsuki spacecraft in orbit around the planet; these missions and their achievements are concisely described in the first part of the review, along with a summary of previous Venus observations. The scientific discussions which follow are divided into three main sections: on the surface and interior; the atmosphere and climate; and the thermosphere, exosphere and magnetosphere. These reports are intended to provide an overview for the general reader, and also an introduction to the more detailed topical surveys in the following articles in this issue, where full references to original material may be found.  相似文献   

10.
Experimental results on the ionospheres of Venus, Mars, Jupiter, Saturn, and Uranus are reviewed, especially from space missions like Pioneer Venus, Viking-1, and -2, Pioneer-10 and -11, and Voyager-1 and -2. Our emphasis has been on Venus, since most of the observational material pertains to it. On the outer planets, where the observations are rather modest, more emphasis is given on theoretical modelling.  相似文献   

11.
The investigations of Venus take a special position in planetary researches. It was just the atmosphere of Venus where first measurements in situ were carried out by means of the equipment delivered by a space probe (Venera 4, 1967). Venus appeared to be the first neighbor planet whose surface had been seen by us in the direct nearness made possible by means of the phototelevision device (Venera 9 and Venera 10, 1975). The reasons for the high interest in this planet are very simple. This planet is like the Earth by its mass, size and amount of energy obtained from the Sun and at the same time it differs sharply by the character of its atmosphere and climate. We hope that the investigations of Venus will lead us to define more precisely the idea of complex physical and physical-chemical processes which rule the evolution of planetary atmospheres. We hope to learn to forecast this evolution and maybe, in the far future, to control it. The last expeditions to Venus carried out in 1978 — American (Pioneer-Venus) and Soviet (Venera 11 and 12) — brought much news and it is interesting to sum up the results just now. The contents of this review are:
  1. The planet Venus — basic astronomical data.
  2. Chemical composition.
  3. Temperature, pressure, density (from 0 to 100 km).
  4. Clouds.
  5. Thermal regime and greenhouse effect.
  6. Dynamics.
  7. Chemical processes.
  8. Upper atmosphere.
  9. Origin and evolution.
  10. Problems for future studies
Here we have attempted to review the data published up to 1979 and partly in 1980. The list of references is not exhaustive. Publications of special issues of magazines and collected articles concerning separate space expeditions became traditional last time. The results obtained on the Soviet space probes Venera 9, 10 (the first publications) are collected in the special issues of Kosmicheskie issledovanija (14, Nos. 5, 6, 1975), analogous material about Venera 11, 12 is given at Pis'ma Astron. Zh. (5, Nos. 1 and 5, 1978), and in Kosmicheskie issledovanija (16, No. 5, 1979). The results of Pioneer-Venus mission are represented in two Science issues (203, No. 4382; 205, No. 4401) and special issue of J. Geophys. Res. (1980). We shall mention some articles to the same topic among previous surveys: (Moroz, 1971; Sagan, 1971; Marov, 1972; Hunten et al., 1977; Hoffman et al., 1977) and also the books by Kuzmin and Marov (1974) and Kondrat'ev (1977). Some useful information in the part of ground-based observations may be found in the older sources (for example, Sharonov, 1965; Moroz, 1967). For briefness we shall use as a rule the abbreviations of space missions names: V4 instead of Venera 4, M10 instead of Mariner 10 and so on. The first artificial satellites of Venus in the world (orbiters Venera 9 and 10) we shall mark as V9-O, V10-O unlike the descent probes V9, V10. Fly-by modules of Venera 11 and Venera 12 we shall mark as V11-F and V12-F. Pioneers descent probes — Large (Sounder), Day, Night and North — will be marked as P-L, P-D, P-Ni, P-No, orbiter as P-O, and bus as P-B.  相似文献   

12.
We review here observations and models related to the chemical and thermal structures, airglow and auroral emissions and dynamics of the Venus thermosphere, and compare empirical models of the neutral densities based in large part on in situ measurements obtained by the Pioneer Venus spacecraft. Observations of the intensities of emissions are important as a diagnostic tool for understanding the chemical and physical processes taking place in the Venus thermosphere. Measurements, ground-based and from rockets, satellites, and spacecraft, and model predictions of atomic, molecular and ionic emissions, are presented and the most important sources are elucidated. Coronas of hot hydrogen and hot oxygen have been observed to surround the terrestrial planets. We discuss the observations of and production mechanisms for the extended exospheres and models for the escape of lighter species from the atmosphere. Over the last decade and a half, models have attempted to explain the unexpectedly cold temperatures in the Venus thermosphere; recently considerable progress has been made, although some controversies remain. We review the history of these models and discuss the heating and cooling mechanisms that are presently considered to be the most important in determining the thermal structure. Finally, we discuss major aspects of the circulation and dynamics of the thermosphere: the sub-solar to anti-solar circulation, superrotation, and turbulent processes.  相似文献   

13.
This paper reviews the progress achieved in planetary atmospheric electricity, with focus on lightning observations by present operational spacecraft, aiming to fill the hiatus from the latest review published by Desch et al. (Rep. Prog. Phys. 65:955–997, 2002). The information is organized according to solid surface bodies (Earth, Venus, Mars and Titan) and gaseous planets (Jupiter, Saturn, Uranus and Neptune), and each section presents the latest results from space-based and ground-based observations as well as laboratory experiments. Finally, we review planned future space missions to Earth and other planets that will address some of the existing gaps in our knowledge.  相似文献   

14.
Although in recent years much has been learned about the atmospheric composition and structure of Venus, there are many key questions which remain unanswered. The Pioneer Venus set of experiments is designed to provide information both individually and collectively to help understand and explain first of all the present state of the atmosphere (the composition and distribution in both the lower and upper parts, the state property profiles, the cloud compositions, the role of phase in the thermal structure, the planet's surface and interior composition, the high surface temperature, the stability of CO2, the ionosphere — its chemistry and thermal structure, the existence of superrotation, the response of the upper atmosphere to changes in solar EUV and the solar wind) and secondly the origin and evolution of the atmosphere. This paper discusses these questions and the degree to which the Pioneer Venus instruments will respond to them.  相似文献   

15.
This paper is an introduction to a special issue ofSpace Science Reviews dedicated to the exploration of Venus and the role played by the Pioneer Venus program. The Pioneer Venus program consists of a Multiprobe and Orbiter mission, both to be launched and to encounter Venus in 1978. The evolution of the program is traced from its conception in 1968 as the Goddard Space Flight Center Planetary Explorer Program through its transfer to Ames Research Center in 1971 as Pioneer Venus to the present.  相似文献   

16.
Many significant wave phenomena have been discovered at Venus with the plasma wave instrument flow on the Pioneer Venus Orbiter. It has been shown that whistler-mode waves in the magnetosheath of the planet may be an important source of energy for the topside ionosphere. Plasma waves are also associated with thickening of the ionopause current layer. Current-generated waves in plasma clouds may provide anomalous resistance resulting in electron acceleration, possibly producing aurora. Ion-acoustic waves are observed in the bow shock, and appear to be a feature of the magnetotail boundary. Lastly plasma waves have been cited as evidence for lightning on Venus.  相似文献   

17.
The Kelvin–Helmholtz instability (KHI) is a ubiquitous phenomenon across the Universe, observed from 500 m deep in the oceans on Earth to the Orion molecular cloud. Over the past two decades, several space missions have enabled a leap forward in our understanding of this phenomenon at the Earth’s magnetopause. Key results obtained by these missions are first presented, with a special emphasis on Cluster and THEMIS. In particular, as an ideal instability, the KHI was not expected to produce mass transport. Simulations, later confirmed by spacecraft observations, indicate that plasma transport in Kelvin–Helmholtz (KH) vortices can arise during non-linear stage of its development via secondary process. In addition to plasma transport, spacecraft observations have revealed that KHI can also lead to significant ion heating due to enhanced ion-scale wave activity driven by the KHI. Finally, we describe what are the upcoming observational opportunities in 2018–2020, thanks to a unique constellation of multi-spacecraft missions including: MMS, Cluster, THEMIS, Van Allen Probes and Swarm.  相似文献   

18.
The Ball Micromission Spacecraft (MSC) is a multi-purpose platform capable of supporting science missions at distances from the Sun ranging from 0.7 to 1.7 AU. In the baseline scenario, MSC is launched as a secondary payload on an Ariane 5 rocket from Kourou, French Guiana, to GTO using the Ariane 5 structure for auxiliary payloads (ASAP5). The maximum launch wet mass is 242 Kg and can include up to 45 Kg of payload depending on AV needs. The on-board propulsion system is used for maneuvering in the Earth-Moon system and injecting the spacecraft into its final orbit or trajectory. For Mars missions, MSC enables orbiting Mars for science payloads and/or communications and navigation assets, or for precision Mars fly-bys to drop up to six probes. The micromissions spacecraft bus can be used for science targets other than Mars, including the Moon, Earth, Venus, Earth-Sun Lagrange points, or other small bodies. This paper summarizes the current spacecraft concept and describes the multimission spacecraft bus implementation in more detail.  相似文献   

19.
We describe the observational history and assess the current understanding of the magnetosheath and magnetotail of Venus, stressing recent developments. We make recommendations for research that can be done using existing observations, as well as desirable trajectory and instrumentation characteristics for future spacecraft missions.  相似文献   

20.
The radio-metric tracking data received from the Pioneer 10 and 11 spacecraft from the distances between 20–70 astronomical units from the Sun has consistently indicated the presence of a small, anomalous, blue-shifted Doppler frequency drift that limited the accuracy of the orbit reconstruction for these vehicles. This drift was interpreted as a sunward acceleration of a P =(8.74±1.33)×10?10 m/s2 for each particular spacecraft. This signal has become known as the Pioneer anomaly; the nature of this anomaly is still being investigated. Recently new Pioneer 10 and 11 radio-metric Doppler and flight telemetry data became available. The newly available Doppler data set is much larger when compared to the data used in previous investigations and is the primary source for new investigation of the anomaly. In addition, the flight telemetry files, original project documentation, and newly developed software tools are now used to reconstruct the engineering history of spacecraft. With the help of this information, a thermal model of the Pioneers was developed to study possible contribution of thermal recoil force acting on the spacecraft. The goal of the ongoing efforts is to evaluate the effect of on-board systems on the spacecrafts’ trajectories and possibly identify the nature of this anomaly. Techniques developed for the investigation of the Pioneer anomaly are applicable to the New Horizons mission. Analysis shows that anisotropic thermal radiation from on-board sources will accelerate this spacecraft by ~41×10?10 m/s2. We discuss the lessons learned from the study of the Pioneer anomaly for the New Horizons spacecraft.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号