首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
    
《Space Science Reviews》2007,128(1-4):433-506
The Optical, Spectroscopic, and Infrared Remote Imaging System OSIRIS is the scientific camera system onboard the Rosetta spacecraft (Figure 1). The advanced high performance imaging system will be pivotal for the success of the Rosetta mission. OSIRIS will detect 67P/Churyumov-Gerasimenko from a distance of more than 106 km, characterise the comet shape and volume, its rotational state and find a suitable landing spot for Philae, the Rosetta lander. OSIRIS will observe the nucleus, its activity and surroundings down to a scale of ~2 cm px−1. The observations will begin well before the onset of cometary activity and will extend over months until the comet reaches perihelion. During the rendezvous episode of the Rosetta mission, OSIRIS will provide key information about the nature of cometary nuclei and reveal the physics of cometary activity that leads to the gas and dust coma. OSIRIS comprises a high resolution Narrow Angle Camera (NAC) unit and a Wide Angle Camera (WAC) unit accompanied by three electronics boxes. The NAC is designed to obtain high resolution images of the surface of comet 67P/Churyumov-Gerasimenko through 12 discrete filters over the wavelength range 250–1000 nm at an angular resolution of 18.6 μrad px−1. The WAC is optimised to provide images of the near-nucleus environment in 14 discrete filters at an angular resolution of 101 μrad px−1. The two units use identical shutter, filter wheel, front door, and detector systems. They are operated by a common Data Processing Unit. The OSIRIS instrument has a total mass of 35 kg and is provided by institutes from six European countries.  相似文献   

2.
Dust is an important constituent of cometary emission; its analysis is one of the major objectives of ESA’s Rosetta mission to comet 67P/Churyumov-Gerasimenko (C–G). Several instruments aboard Rosetta are dedicated to studying various aspects of dust in the cometary coma, all of which require a certain level of exposure to dust to achieve their goals. At the same time, impacts of dust particles can constitute a hazard to the spacecraft. To conciliate the demands of dust collection instruments and spacecraft safety, it is desirable to assess the dust environment in the coma even before the arrival of Rosetta. We describe the present status of modelling the dust coma of 67P/C–G and predict the speed and flux of dust in the coma, the dust fluence on a spacecraft along sample trajectories, and the radiation environment in the coma. The model will need to be refined when more details of the coma are revealed by observations. An overview of astronomical observations of 67P/C–G is given, because model parameters are derived from this data if possible. For quantities not yet measured for 67P/C–G, we use values obtained for other comets, e.g. concerning the optical and compositional properties of the dust grains. One of the most important and most controversial parameters is the dust mass distribution. We summarise the mass distribution functions derived from the in-situ measurements at comet 1P/Halley in 1986. For 67P/C–G, constraining the mass distribution is currently only possible by the analysis of astronomical images. We find that both the dust mass distribution and the time dependence of the dust production rate of 67P/C–G are those of a fairly typical comet.  相似文献   

3.
MIRO: Microwave Instrument for Rosetta Orbiter   总被引:1,自引:0,他引:1  
The European Space Agency Rosetta Spacecraft, launched on March 2, 2004 toward Comet 67P/Churyumov-Gerasimenko, carries a relatively small and lightweight millimeter-submillimeter spectrometer instrument, the first of its kind launched into deep space. The instrument will be used to study the evolution of outgassing water and other molecules from the target comet as a function of heliocentric distance. During flybys of the asteroids (2867) Steins and (21) Lutetia in 2008 and 2010 respectively, the instrument will measure thermal emission and search for water vapor in the vicinity of these asteroids. The instrument, named MIRO (Microwave Instrument for the Rosetta Orbiter), consists of a 30-cm diameter, offset parabolic reflector telescope followed by two heterodyne receivers. Center-band operating frequencies of the receivers are near 190 GHz (1.6 mm) and 562 GHz (0.5 mm). Broadband continuum channels are implemented in both frequency bands for the measurement of near surface temperatures and temperature gradients in Comet 67P/Churyumov-Gerasimenko and the asteroids (2867) Steins and (21) Lutetia. A 4096 channel CTS (Chirp Transform Spectrometer) spectrometer having 180 MHz total bandwidth and 44 kHz resolution is, in addition to the continuum channel, connected to the submillimeter receiver. The submillimeter radiometer/spectrometer is fixed tuned to measure four volatile species – CO, CH3OH, NH3 and three, oxygen-related isotopologues of water, H2 16O, H2 17O and H2 18O. The basic quantities measured with the MIRO instrument are surface temperature, gas production rates and relative abundances, and velocity and excitation temperature of each species, along with their spatial and temporal variability. This paper provides a short discussion of the scientific objectives of the investigation, and a detailed discussion of the MIRO instrument system.  相似文献   

4.
In 2003, comet 67P/Churyumov–Gerasimenko was selected as the new target of the Rosetta mission as the most suitable alternative to the original target, comet 46P/Wirtanen, on the basis of orbital considerations even though very little was known about the physical properties of its nucleus. In a matter of a few years and based on highly focused observational campaigns as well as thorough theoretical investigations, a detailed portrait of this nucleus has been established that will serve as a baseline for planning the Rosetta operations and observations. In this review article, we present a novel method to determine the size and shape of a cometary nucleus: several visible light curves were inverted to produce a size–scale free three–dimensional shape, the size scaling being imposed by a thermal light curve. The procedure converges to two solutions which are only marginally different. The nucleus of comet 67P/Churyumov–Gerasimenko emerges as an irregular body with an effective radius (that of the sphere having the same volume) = 1.72 km and moderate axial ratios a/b = 1.26 and a/c = 1.5 to 1.6. The overall dimensions measured along the principal axis for the two solutions are 4.49–4.75 km, 3.54–3.77 km and 2.94–2.92 km. The nucleus is found to be in principal axis rotation with a period = 12.4–12.7 h. Merging all observational constraints allow us to specify two regions for the direction of the rotational axis of the nucleus: RA = 220°+50° −30° and Dec = −70° ± 10° (retrograde rotation) or RA = 40°+50° -30° and Dec = +70°± 10° (prograde), the better convergence of the various determinations presently favoring the first solution. The phase function, although constrained by only two data points, exhibits a strong opposition effect rather similar to that of comet 9P/Tempel 1. The definition of the disk–integrated albedo of an irregular body having a strong opposition effect raises problems, and the various alternatives led to a R-band geometric albedo in the range 0.045–0.060, consistent with our present knowledge of cometary nuclei. The active fraction is low, not exceeding ~ 7% at perihelion, and is probably limited to one or two active regions subjected to a strong seasonal effect, a picture coherent with the asymmetric behaviour of the coma. Our slightly downward revision of the size of the nucleus of comet 67P/Churyumov-Gerasimenko resulting from the present analysis (with the correlative increase of the albedo compared to the originally assumed value of 0.04), and our best estimate of the bulk density of 370 kg m−3, lead to a mass of ~ 8 × 1012 kg which should ease the landing of Philae and insure the overall success of the Rosetta mission.  相似文献   

5.
The International Rosetta Mission is set for a rendezvous with Comet 67 P/Churyumov-Gerasimenko in 2014. On its 10 year journey to the comet, the spacecraft will also perform a fly-by of the two asteroids Stein and Lutetia in 2008 and 2010, respectively. The mission goal is to study the origin of comets, the relationship between cometary and interstellar material and its implications with regard to the origin of the Solar System. Measurements will be performed that shed light into the development of cometary activity and the processes in the surface layer of the nucleus and the inner coma. The Micro-Imaging Dust Analysis System (MIDAS) instrument is an essential element of Rosetta’s scientific payload. It will provide 3D images and statistical parameters of pristine cometary particles in the nm-μm range from Comet 67P/Churyumov-Gerasimenko. According to cometary dust models and experience gained from the Giotto and Vega missions to 1P/Halley, there appears to be an abundance of particles in this size range, which also covers the building blocks of pristine interplanetary dust particles. The dust collector of MIDAS will point at the comet and collect particles drifting outwards from the nucleus surface. MIDAS is based on an Atomic Force Microscope (AFM), a type of scanning microprobe able to image small structures in 3D. AFM images provide morphological and statistical information on the dust population, including texture, shape, size and flux. Although the AFM uses proven laboratory technology, MIDAS is its first such application in space. This paper describes the scientific objectives and background, the technical implementation and the capabilities of MIDAS as they stand after the commissioning of the flight instrument, and the implications for cometary measurements.  相似文献   

6.
The Deep Impact observations of low thermal inertia for comet 9P/Tempel 1 are of profound importance for the observations to be made by the Rosetta spacecraft at comet 67P/Churyumov-Gerasimenko. While sub-surface sublimation is necessary to explain the observations, the depth at which this occurs is no more than 2–3 cm and possibly less. The low thermal conductivity when combined with local surface roughness (also observed with Deep Impact) implies that local variations in outgassing rates can be substantial. These variations are likely to be on scales smaller than the resolution limits of all experiments on the Rosetta orbiter. The observed physico-chemical inhomogeneity further suggests that the Rosetta lander will only provide a local snapshot of conditions in the nucleus layer.  相似文献   

7.
Comets are considered the most primitive planetary bodies in our Solar System, i.e., they should have best preserved the solid components of the matter from which our Solar System formed. ESA’s recent Rosetta mission to Jupiter family comet 67P/Churyumov–Gerasimenko (67P/CG) has provided a wealth of isotope data which expanded the existing data sets on isotopic compositions of comets considerably. In this paper we review our current knowledge on the isotopic compositions of H, C, N, O, Si, S, Ar, and Xe in primitive Solar System materials studied in terrestrial laboratories and how the Rosetta data acquired with the ROSINA (Rosetta Orbiter Sensor for Ion and Neutral Analysis) and COSIMA (COmetary Secondary Ion Mass Analyzer) mass spectrometer fit into this picture. The H, Si, S, and Xe isotope data of comet 67P/CG suggest that this comet might be particularly primitive and might have preserved large amounts of unprocessed presolar matter. We address the question whether the refractory Si component of 67P/CG contains a presolar isotopic fingerprint from a nearby Type II supernova (SN) and discuss to which extent C and O isotope anomalies originating from presolar grains should be observable in dust from 67P/CG. Finally, we explore whether the isotopic fingerprint of a potential late SN contribution to the formation site of 67P/CG in the solar nebula can be seen in the volatile component of 67P/CG.  相似文献   

8.
The plasma environment of comet 67P/Churyumov-Gerasimenko, the Rosetta mission target comet, is explored over a range of heliocentric distances throughout the mission: 3.25 AU (Rosetta instruments on), 2.7 AU (Lander down), 2.0 AU, and 1.3 AU (perihelion). Because of the large range of gas production rates, we have used both a fluid-based magnetohydrodynamic (MHD) model as well as a semi-kinetic hybrid particle model to study the plasma distribution. We describe the variation in plasma environs over the mission as well as the differences between the two modeling approaches under different conditions. In addition, we present results from a field aligned, two-stream transport electron model of the suprathermal electron flux when the comet is near perihelion.  相似文献   

9.
The ESA mission Rosetta, launched on March 2nd, 2004, carries an instrument suite to the comet 67P/Churyumov-Gerasimenko. The COmetary Secondary Ion Mass Anaylzer – COSIMA – is one of three cometary dust analyzing instruments onboard Rosetta. COSIMA is based on the analytic measurement method of secondary ion mass spectrometry (SIMS). The experiment’s goal is in-situ analysis of the elemental composition (and isotopic composition of key elements) of cometary grains. The chemical characterization will include the main organic components, present homologous and functional groups, as well as the mineralogical and petrographical classification of the inorganic phases. All this analysis is closely related to the chemistry and history of the early solar system. COSIMA covers a mass range from 1 to 3500 amu with a mass resolution mm @ 50% of 2000 at mass 100 amu. Cometary dust is collected on special, metal covered, targets, which are handled by a target manipulation unit. Once exposed to the cometary dust environment, the collected dust grains are located on the target by a microscopic camera. A pulsed primary indium ion beam (among other entities) releases secondary ions from the dust grains. These ions, either positive or negative, are selected and accelerated by electrical fields and travel a well-defined distance through a drift tube and an ion reflector. A microsphere plate with dedicated amplifier is used to detect the ions. The arrival times of the ions are digitized, and the mass spectra of the secondary ions are calculated from these time-of-flight spectra. Through the instrument commissioning, COSIMA took the very first SIMS spectra of the targets in space. COSIMA will be the first instrument applying the SIMS technique in-situ to cometary grain analysis as Rosetta approaches the comet 67P/Churyumov-Gerasimenko, after a long journey of 10 years, in 2014.  相似文献   

10.
The Alpha Particle X-Ray Spectrometer (APXS) is a small instrument to determine the elemental composition of a given sample. For the ESA Rosetta mission, the periodical comet 67P/Churyumov-Gerasimenko was selected as the target comet, where the lander PHILAE (after landing) will carry out in-situ observations. One of the instruments onboard is the APXS to make measurements on the landing site. The APXS science goal is to provide basic compositional data of the comet surface. As comets consist of a mixture of ice and dust, the dust component can be characterized and compared with known meteoritic compositions. Various element ratios can be used to evaluate whether chemical fractionations occurred in cometary material by comparing them with known chondritic material. To enable observations of the local environment, APXS measurements of several spots on the surface and one spot as function of temperature can be made. Repetitive measurements as function of heliocentric distance can elucidate thermal processes at work. By measuring samples that were obtained by drilling subsurface material can be analyzed. The accumulated APXS data can be used to shed light on state, evolution, and origin of 67P/Churyumov- Gerasimenko.  相似文献   

11.
Altwegg  K.  Balsiger  H.  Geiss  J. 《Space Science Reviews》1999,90(1-2):3-18
The investigation of the volatile material in the coma of comets is a key to understanding the origin of cometary material, the physical and chemical conditions in the early solar system, the process of comet formation, and the changes that comets have undergone during the last 4.6 billion years. So far, in situ investigations of the volatile constituents have been confined to a single comet, namely P/Halley in 1986. Although, the Giotto mission gave only a few hours of data from the coma, it has yielded a surprising amount of new data and has advanced cometary science by a large step. In the present article the most important results of the measurements of the volatile material of Halley's comet are summarized and an overview of the identified molecules is given. Furthermore, a list of identified radicals and unstable molecules is presented for the first time. At least one of the radicals, namely CH2, seems to be present as such in the cometary ice. As an outlook to the future we present a list of open questions concerning cometary volatiles and a short preview on the next generation of mass spectrometers that are being built for the International Rosetta Mission to explore the coma of Comet Wirtanen. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
The European Space Agency (ESA) Rosetta Spacecraft, launched on March 2, 2004 toward Comet 67P/Churyumov-Gerasimenko (C-G), carries a complementary set of instruments on both the orbiter and lander (Philae) portions of the spacecraft, to measure the composition of the Comet C-G. The primary composition measuring instruments on the Orbiter are Alice, COSIMA, ICA, MIRO, OSIRIS, ROSINA and VIRTIS. These instruments collectively are capable of providing compositional information, including temporal and spatial distributions of important atomic, molecular, and ionic species, minerals, and ices in the coma and nucleus. The instruments utilize a variety of techniques and wavelength ranges to accomplish their objectives. This paper provides an overview of composition measurements that will be possible using the suite of orbiter composition measuring instruments. A table is provided that lists important species detectable (depending on abundances) with each instrument.  相似文献   

13.
SESAME is an instrument complex built in international co-operation and carried by the Rosetta lander Philae intended to land on comet 67P/Churyumov-Gerasimenko in 2014. The main goals of this instrument suite are to measure mechanical and electrical properties of the cometary surface and the shallow subsurface as well as of the particles emitted from the cometary surface. Most of the sensors are mounted within the six soles of the landing gear feet in order to provide good contact with or proximity to the cometary surface. The measuring principles, instrument designs, technical layout, operational concepts and the results from the first in-flight measurements are described. We conclude with comments on the consequences of the last minute change of the target comet and how to improve and to preserve the knowledge during the long-duration Rosetta mission.  相似文献   

14.
The Rosetta spacecraft has been successfully launched on 2nd March 2004 to its new target comet 67 P/Churyumov-Gerasimenko. The science objectives of the Rosetta Radio Science Investigations (RSI) experiment address fundamental aspects of cometary physics such as the mass and bulk density of the nucleus, its gravity field, its interplanetary orbit perturbed by nongravitational forces, its size and shape, its internal structure, the composition and roughness of the nucleus surface, the abundance of large dust grains, the plasma content in the coma and the combined dust and gas mass flux. The masses of two asteroids, Steins and Lutetia, shall be determined during flybys in 2008 and 2010, respectively. Secondary objectives are the radio sounding of the solar corona during the superior conjunctions of the spacecraft with the Sun during the cruise phase. The radio carrier links of the spacecraft Telemetry, Tracking and Command (TT&C) subsystem between the orbiter and the Earth will be used for these investigations. An Ultrastable oscillator (USO) connected to both transponders of the radio subsystem serves as a stable frequency reference source for both radio downlinks at X-band (8.4 GHz) and S-band (2.3 GHz) in the one-way mode. The simultaneous and coherent dual-frequency downlinks via the High Gain Antenna (HGA) permit separation of contributions from the classical Doppler shift and the dispersive media effects caused by the motion of the spacecraft with respect to the Earth and the propagation of the signals through the dispersive media, respectively. The investigation relies on the observation of the phase, amplitude, polarization and propagation times of radio signals transmitted from the spacecraft and received with ground station antennas on Earth. The radio signals are affected by the medium through which the signals propagate (atmospheres, ionospheres, interplanetary medium, solar corona), by the gravitational influence of the planet on the spacecraft and finally by the performance of the various systems involved both on the spacecraft and on ground.  相似文献   

15.
Geiss  J.  Altwegg  K.  Balsiger  H.  Graf  S. 《Space Science Reviews》1999,90(1-2):253-268
We have searched for rare molecules and radicals in the coma of P/Halley using the ion data obtained by IMS-Giotto. Whereas our established methods were used in the ionosphere, a new model was developed for the interpretation of the ion data in the outer coma. Ne/H2O < 1.5 × 10-3 was determined in the coma of the comet. Upper limits for the production of Na were derived from the very low abundance of Na+. Methyl cyanide and (probably) ethyl cyanide were identified with abundances of CH3CN/H2O = (1.4 ± .6) × 10-3 and C2H5CN/H2O = (2.8 ± 1.6) × 10-4. These results and upper limits for other N-bearing species confirm that nitrogen is depleted in the Halley material. C4H was identified and a point source strength of C4H/H2O = (2.3 ± .8) × 10-3 was derived. Our upper limit for C3H is lower than the abundance of C4H. This is in agreement with the enhanced abundances of CnH species with even numbers of C-atoms found in interstellar molecular clouds, suggesting that the C4H in Halley was synthesized under molecular cloud conditions. Thus, C4H and other organics with unpaired electrons may turn out to be indicators for a molecular cloud origin of cometary constituents. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
ESA’s Rosetta mission was launched in March 2004 and is on its way to comet 67P/Churyumov-Gerasimenko, where it is scheduled to arrive in summer 2014. It comprises a payload of 12 scientific instruments and a Lander. All instruments are provided by Principal Investigators, which are responsible for their operations. As for most ESA science missions, the ground segment of the mission consists of a Mission Operations Centre (MOC) and a Science Operations Centre (SOC). While the MOC is responsible for all spacecraft-related aspects and the final uplink of all command timelines to the spacecraft, the scientific operations of the instruments and the collection of the data and ingestion into the Planetary Science Archive are coordinated by the SOC. This paper focuses on the tasks of the SOC and in particular on the methodology and constraints to convert the scientific goals of the Rosetta mission to operational timelines.  相似文献   

17.
ROLIS (Rosetta Lander Imaging System) is one of the two imaging systems carried by Rosetta’s Lander Philae, successfully launched to comet 67P/ Churyumov-Gerasimenko in March 2004. Consisting of a highly-miniaturized CCD camera, ROLIS will operate as a descent imager, acquiring imagery of the landing site with increasing spatial resolution. After touchdown ROLIS will focus at an object distance of 30 cm, taking pictures of the comet’s surface below the Lander. Multispectral imaging is achieved through an illumination device consisting of four arrays of monochromatic light emitting diodes working in the 470, 530, 640 and 870 nm spectral bands. The drill sample sites, as well as the Alpha X-Ray Spectrometer (APXS) target locations will be imaged to provide context for the measurements performed by the in situ analyzers. After the drilling operation, the borehole will be inspected to study its morphology and to search for stratification. Taking advantage of the Lander’s rotation capability, stereo image pairs will be acquired, which will facilitate the mapping and identification of surface structures.  相似文献   

18.
We describe the design, performance and scientific objectives of the NASA-funded ALICE instrument aboard the ESA Rosetta asteroid flyby/comet rendezvous mission. ALICE is a lightweight, low-power, and low-cost imaging spectrograph optimized for cometary far-ultraviolet (FUV) spectroscopy. It will be the first UV spectrograph to study a comet at close range. It is designed to obtain spatially-resolved spectra of Rosetta mission targets in the 700–2050 Å spectral band with a spectral resolution between 8 Å and 12 Å for extended sources that fill its ~0.05^ × 6.0^ field-of-view. ALICE employs an off-axis telescope feeding a 0.15-m normal incidence Rowland circle spectrograph with a toroidal concave holographic reflection grating. The microchannel plate detector utilizes dual solar-blind opaque photocathodes (KBr and CsI) and employs a two-dimensional delay-line readout array. The instrument is controlled by an internal microprocessor. During the prime Rosetta mission, ALICE will characterize comet 67P/Churyumov-Gerasimenko's coma, its nucleus, and nucleus/coma coupling; during cruise to the comet, ALICE will make observations of the mission's two asteroid flyby targets and of Mars, its moons, and of Earth's moon. ALICE has already successfully completed the in-flight commissioning phase and is operating well in flight. It has been characterized in flight with stellar flux calibrations, observations of the Moon during the first Earth fly-by, and observations of comet C/2002 T7 (LINEAR) in 2004 and comet 9P/Tempel 1 during the 2005 Deep Impact comet-collision observing campaign.  相似文献   

19.
The VIRTIS (Visual IR Thermal Imaging Spectrometer) experiment has been one of the most successful experiments built in Europe for Planetary Exploration. VIRTIS, developed in cooperation among Italy, France and Germany, has been already selected as a key experiment for 3 planetary missions: the ESA-Rosetta and Venus Express and NASA-Dawn. VIRTIS on board Rosetta and Venus Express are already producing high quality data: as far as Rosetta is concerned, the Earth-Moon system has been successfully observed during the Earth Swing-By manouver (March 2005) and furthermore, VIRTIS will collect data when Rosetta flies by Mars in February 2007 at a distance of about 200 kilometres from the planet. Data from the Rosetta mission will result in a comparison – using the same combination of sophisticated experiments – of targets that are poorly differentiated and are representative of the composition of different environment of the primordial solar system. Comets and asteroids, in fact, are in close relationship with the planetesimals, which formed from the solar nebula 4.6 billion years ago. The Rosetta mission payload is designed to obtain this information combining in situ analysis of comet material, obtained by the small lander Philae, and by a long lasting and detailed remote sensing of the comet, obtained by instrument on board the orbiting Spacecraft. The combination of remote sensing and in situ measurements will increase the scientific return of the mission. In fact, the “in situ” measurements will provide “ground-truth” for the remote sensing information, and, in turn, the locally collected data will be interpreted in the appropriate context provided by the remote sensing investigation. VIRTIS is part of the scientific payload of the Rosetta Orbiter and will detect and characterise the evolution of specific signatures – such as the typical spectral bands of minerals and molecules – arising from surface components and from materials dispersed in the coma. The identification of spectral features is a primary goal of the Rosetta mission as it will allow identification of the nature of the main constituent of the comets. Moreover, the surface thermal evolution during comet approach to sun will be also studied.  相似文献   

20.
A fundamental goal of cometary studies is to determine the exact relationship between these bodies and the Solar System – the question(s) can be summarised as follows: did comets originate during the same events that spawned the Sun and planets, are they more primitive bodies that record a pre-solar history, or are they interstellar materials collected in relatively more recent times? Now, whatever the origin of comets, it is entirely possible that they could, in part, contain interstellar or pre-solar components – indeed, it seems rather likely in light of the fact that primitive meteorites contain such entities. These particular components are likely to be refractory (dust, macromolecular organic complexes, etc.). Of more relevance to the issues above are the volatile constituents, which make up the bulk of a comet's mass. Since these materials, by their very nature, volatilise during perihelion passage of a comet they can, in some instances, be detected and measured spectroscopically. Perhaps the most useful species for isotopic investigations are C2, HCN and CN. Unfortunately, spectroscopic measurements can only currently be made with accuracies of ±10 to ±20%. As such it is very often not practical to conclude anything further than the fact that isotopic measurements are compatible with ‘`solar’' values, which tends to imply an origin from the margins of the solar accretion disk. But there is another problem with the spectroscopic measurements – since these are made on gaseous species in the coma (and relatively minor species at that) it is impossible to be certain that these represent the true nuclear values. In other words, if the processes of sublimation, active jetting, and photochemistry in the coma impart isotopic fractionation, the spectroscopic measurements could give a false impression of the true isotope ratios. What is required is an experiment capable of measuring isotopic ratios at the very surface of a comet. Herein we describe the Ptolemy instrument, which is included on the Philae lander as part of the Rosetta mission to 67P/Churyumov-Gerasimenko. The major objective of Ptolemy is a detailed appraisal of the nature and isotopic compositions of all materials present at the surface of a comet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号