首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 235 毫秒
1.
有效减小诱导阻力对于飞机降低油耗、提高航程具有重要意义。针对某飞机翼身组合体构型,采用CFD数值模拟方法分析融合式翼梢小翼对飞机气动力特性的影响,尤其是其减阻效应;并给出翼梢小翼附近的空间流场。结果表明:带翼梢小翼后翼尖涡强度减弱,飞机阻力系数明显下降;固定升力系数0.5时,弯矩增加3.2%,阻力系数减小4.2%。  相似文献   

2.
推导了商用飞机诱导阻力公式,给出经典的诱导阻力表达式。对翼尖装置发展和演变历史进行了梳理,分析了翼梢小翼的减阻机理。从端板作用、耗散翼尖涡等5个方面分析了翼梢小翼对商用飞机飞行性能的影响,在此基础上提出了翼梢小翼的设计参数和设计原则。最后研究了应用于不同型号商用飞机的翼梢小翼的特点和最新进展。研究结果表明,商用飞机使用翼梢小翼能够显著降低诱导阻力,增加升阻比并提高燃油经济性。同时,商用飞机翼梢小翼正向着智能变形结构方向发展,以实现不同飞行任务阶段的性能最优化。  相似文献   

3.
翼梢小翼能够抑制翼尖涡的形成,减小诱导阻力,增加航程。目前翼梢小翼的设计目标是改善飞机巡航阶段的升阻特性,而无法在起降、爬升阶段提供最优的减阻效果。本文设计了一种伸缩栅格结构变展长翼梢小翼,通过在飞行过程中控制翼梢小翼高度的变化,改善飞机起降、爬升阶段和巡航阶段的气动性能。利用基于涡格法的AVL软件计算伸缩式翼梢小翼对飞机气动性能的影响,结果表明在起降、爬升阶段(0.3Ma,8°迎角),这种伸缩式翼梢小翼能使升力系数提高0.21%,诱导阻力系数降低0.57%,而翼根弯矩系数仅增加0.06%,因此这种伸缩式翼梢小翼具有改善飞机起降和爬升性能的潜力。  相似文献   

4.
变体翼梢小翼的减阻机理数值模拟   总被引:1,自引:0,他引:1  
张庆峰  熊克  李伟  陈爽 《航空动力学报》2014,29(5):1105-1111
总结了对翼梢小翼减阻效果影响最大的几何参数,在此基础上采用数值模拟方法研究了这些几何参数的最佳变化范围,为变体翼梢小翼设计提供理论依据.并从气动性能、气动载荷分布和翼尖涡的角度探讨了变体翼梢小翼相对传统翼梢小翼的优缺点.结果表明:在飞机的起飞阶段,变体翼梢小翼的减阻效率比传统翼梢小翼高2.2%,同时将翼尖涡强度降低了15%,有利于提高飞机的燃油效率和机场空域安全;但也会增大机翼的翼根弯矩,因此必须权衡变体翼梢小翼带来的气动收益与结构强度不利因素.  相似文献   

5.
翼尖减阻装置风洞实验研究   总被引:1,自引:0,他引:1  
对Y12飞机加装剪切翼尖和翼梢帆片后,其纵向和横侧气动特性影响的风洞实验表明,该措施几乎在整个实际飞行的升力系数范围内部具有明显的减阻效果,达到了改善性能预定的减阻指标。  相似文献   

6.
杜绵银  崔尔杰  陈培  苏诚 《飞机设计》2012,(2):23-27,31
翼梢小翼可以有效的减小耗散飞机的翼尖涡,减小诱导阻力,从而达到商用飞机减阻增升、节省燃油的目的。本文研究分析了blended winglet和raked wingtip两类小翼的特点,设计了综合这两类小翼特性的翼梢小翼,具有结构简单,增加的有效翼展小、适合于中小型机场特点。同时研究了bladed wingtip形式翼梢小翼的设计原理、设计方法及流场特性。采用的外形参数化设计及自动生成程序方法通过小翼的前后缘来确定小翼的几何形状,具有快速生成外形、易实现优化设计、工程设计效率高等特点。本文设计的bladed wingtip形式的翼梢小翼具有设计点压力峰值低、没有激波、翼尖不易先分离、在增加的有效展长很小的情况下仍有较好的减阻效果等特点。  相似文献   

7.
诱导阻力是飞机阻力的重要组成部分,在机翼翼尖加装翼梢小翼是减小飞机诱导阻力的一种重要手段.针对CJ828干线客机机翼进行翼梢小翼的气动设计及研究,确定翼梢小翼的六个主要参数:展长、后掠角、尖削比、倾斜角、安装角和翼型;综合blended winglet与raked tip形式的小翼特点,从raked tip衍生出一种bladedwingtip式翼梢小翼.通过CFD技术,对设计的小翼进行气动性能计算,计算结果表明,该翼梢小翼能够有效提高CJ828机翼巡航时气动性能,减小巡航飞行时阻力,在巡航状态下升力系数提高1.50%,阻力系数降低6.80%,升阻比提高8.92%.并且,添加小翼可以延长机翼上表面的等压线长度,耗散机翼翼梢涡,降低尾涡强度,减小飞机翼尖效应的影响区域.  相似文献   

8.
本文依据低速风洞实验、载荷分布计算和跨超音速面积律计算,分析了前掠翼布局飞机的气动特性,提出了提高前掠翼气动特性的措施,并用对称性原理解决面涡法和面积律计算方法对前掠翼布局的应用。实验研究和计算表明:前掠翼布局有较好的气动特性,翼梢小翼可提高前掠翼的升力及升阻比。近距耦合的鸭翼及前掠翼翼根填块对改善前掠翼根的气流分离有显著效果。前掠冀比后掠翼更接近最佳载荷分布。有鸭翼的前掠翼组合体的轴向截面分布较易接近最佳当量截面分布,因而可显著减小零升波阻。  相似文献   

9.
王良益 《航空学报》1995,16(5):592-595
在计算与风洞实验的基础上 ,提出了机翼剪切翼梢气动布局 ,对平面形状与翼型进行了优化设计 ,达到了巡航状态与爬升阶段较高的增升减阻要求。计算采用涡格面元法与涡升力展向分布吸力比拟法相结合的方法 ,既能考虑气动力的非线性因素 ,又有较高的计算精度与速度。计算结果与实验数据十分吻合。通过分析得到 ,在矩形翼翼梢处增加具有较大前缘后掠角的梯形剪切翼梢有不仅增加机翼展弦比 ,且可改变展向环量分布 ,使其接近椭圆分布 ;剪切翼梢上的前缘涡可抑制翼端涡的作用 (使翼端涡强度变弱 ) ,并在剪切翼梢上产生附加升力  相似文献   

10.
宋寿峰  韩潮 《航空学报》1995,16(5):596-600
在计算与风洞实验的基础上, 提出了机翼剪切翼梢气动布局, 对平面形状与翼型进行了 优化设计, 达到了巡航状态与爬升阶段较高的增升减阻要求。计算采用涡格面元法与涡升力展向 分布吸力比拟法相结合的方法, 既能考虑气动力的非线性因素, 又有较高的计算精度与速度。计 算结果与实验数据十分吻合。通过分析得到, 在矩形翼翼梢处增加具有较大前缘后掠角的梯形剪 切翼梢有不仅增加机翼展弦比, 且可改变展向环量分布, 使其接近椭圆分布; 剪切翼梢上的前缘 涡可抑制翼端涡的作用(使翼端涡强度变弱) , 并在剪切翼梢上产生附加升力。  相似文献   

11.
本文基于风洞测力、测压、等试验结果,研究了前掠翼的气动力特点,并与相应的后掠翼做了比较。研究了改进前掠翼根部流动的措施和改进后的收益。在低速情况下,根部适当后掠可以较好地改善前掠翼根部的流动,获得较大的气动力收益。配置鸭翼可以进一步改善前掠翼根部的流动,得到更大的升阻比。例如,根部适当后掠的前掠翼(整流翼)配置鸭翼以后,Cy=0.5时的升阻比可比边条后掠翼配置鸭翼(两种布局升力面面积相等)的升阻比提高24%。 前掠翼在跨音速有较小的零升阻力和诱导阻力。当Mα=1.1,α=6°时,前掠翼的诱导阻力要比后掠翼的小12.5%。低速时改善根部流动的措施在跨音速时仍然有效。前掠翼以及根部适当后掠的前掠翼(整流翼)配置合适的鸭翼,也可使前掠翼的高速性能得到较大改善。  相似文献   

12.
本文提出了带翼尖帆片的非共面机翼气动力计算以及帆片参数优化计算方法。文中采用涡格法研制了一种有效的非共同气动力计算程序,采用Powell方法进行优化计算,以获得最优的帆片配置方案。设计了某运输机的翼尖帆片,计算了升力和阻力系数,其结果与风洞试验值基本一致。计算和风洞试验结果表明,翼尖帆片对减少机翼的诱导阻力具有明显效果,本文的方法可供翼尖帆片初步设计应用。  相似文献   

13.
Shock and boundary layer control by contour bumps and local boundary layer suction have been investigated experimentally and numerically on a transonic swept wing. Additional 2-D numerical investigations were performed for the airfoil, corresponding to the wing. The investigations were primarily stimulated by the question concerned with the influence of sweep on the bump effectiveness. This influence has been found to be rather small; the drag reduction by the bump is slightly lower for the swept wing than for the airfoil. A location of the bump in the shock region has shown its effectiveness for reducing shock strength and hence wave drag. A position of the bump downstream of the shock wave has been shown to reduce viscous drag and to postpone buffet-onset to higher lift coefficients. Furthermore, the results indicate that boundary layer suction is a powerful device for drag reduction, but the effectiveness decreases with increasing Reynolds number. Higher effectiveness of suction can be attained, when it is coupled with a contour bump. The parameters height and position (relative to the shock) of the bump, optimized in terms of drag, depend on the shock strength; an influence of the boundary layer thickness upstream of the shock on the optimal bump parameters has not been found. A possibility to control an adaptive bump, mounted on an aircraft wing, is to employ the trailing edge pressure.  相似文献   

14.
《中国航空学报》2022,35(10):67-83
Numerical investigations are conducted to explore the aerodynamic characteristics of three-dimensional Co-Flow Jet (CFJ) wing with simple high-lift devices during low-speed takeoff and landing. Effects of three crucial parameters of CFJ wing, i.e., angle of attack, jet momentum and swept angle, are comprehensively examined. Additionally, the aerodynamic characteristics of two CFJ configurations, i.e., using open and discrete slots for injection, are compared. The results show that applying CFJ technique to a wing with simple high-lift device is able to generate more lift, reduce drag and enlarge stall margin with lower energy expenditure due to the super-circulation effect. Increasing the jet intensity can reduce the drag significantly, which is mainly contributed by the reaction jet force. The Oswald efficiency factor is, in some circumstances, larger than one, which indicates the potential of CFJ in reducing induced drag. Compared with clean wing configuration, using CFJ technique allows the aerodynamic force variation less sensitive to the swept angle, and such phenomenon is better observed for small swept angle region. Eventually, it is interesting to know that the discrete slotted CFJ configuration demonstrates a promising enhancement in aerodynamic performance in terms of high lift, low drag and efficiency.  相似文献   

15.
翼梢小翼的气动特性计算和实验验证   总被引:1,自引:0,他引:1  
周仁良 《航空学报》1984,5(3):261-266
 本文用有限基本解法,对带翼梢小翼后掠翼的亚音速升阻特性进行了计算,并计算了其俯仰力矩和翼根弯矩。通过各种形式翼梢小翼的计算,分析了翼梢小翼气动特性的一般规律。计算结果与实验数据的比较表明,本方法可满足翼梢小翼初步设计和选型的需要。  相似文献   

16.
通过对经典Falkner-Skan-Cooke三维边界层相似解的理论分析和数值求解,结合二维边界层转捩判据的思想,采用由试验数据标定的C1准则关系式求解横流不稳定转捩位移厚度雷诺数,建立了针对固定前缘后掠角机翼的横流转捩判据,并且通过方程求解和数据拟合得到了该转捩判据的数学结果.应用该模型对30°前缘后掠角的ONERA-M6机翼和45°前缘后掠角的NLF(2)-0415无限展长机翼进行了横流不稳定转捩数值模拟.模拟结果显示:改进后的转捩模型预测所得到的转捩位置精度较高,均与后掠翼横流试验数据吻合较好,从而证明了构建的横流不稳定转捩判据的合理性和实用性.   相似文献   

17.
动态三角翼的气动特性及参数影响分析   总被引:2,自引:0,他引:2  
 给出了0°~90°范围内振荡三角翼的测力实验结果,并给出了不同前缘后掠角、振荡频率和转轴位置对三角翼法向力系数的影响,进而讨论了有关参数影响产生的机理。  相似文献   

18.
Experimental investigation of aerodynamic control on a 35 swept flying wing by means of nanosecond dielectric barrier discharge(NS-DBD) plasma was carried out at subsonic flow speed of 20–40 m/s, corresponding to Reynolds number of 3.1 · 105–6.2 · 105. In control condition, the plasma actuator was installed symmetrically on the leading edge of the wing. Lift coefficient, drag coefficient, lift-to-drag ratio and pitching moment coefficient were tested with and without control for a range of angles of attack. The tested results indicate that an increase of 14.5% in maximum lift coefficient, a decrease of 34.2% in drag coefficient, an increase of 22.4% in maximum lift-to-drag ratio and an increase of 2 at stall angle of attack could be achieved compared with the baseline case. The effects of pulsed frequency, amplitude and chord Reynolds number were also investigated.And the results revealed that control efficiency demonstrated strong dependence on pulsed frequency. Moreover, the results of pitching moment coefficient indicated that the breakdown of leading edge vortices could be delayed by plasma actuator at low pulsed frequencies.  相似文献   

19.
弹舱对飞翼布局飞机气动特性影响及其控制   总被引:1,自引:0,他引:1  
以高速风洞气动力测量为研究手段,开展了弹舱开启对飞翼布局飞机气动特性影响及其流动控制试验研究。试验结果表明,对于飞翼布局飞机,弹舱开启主要影响飞机阻力特性,巡航状态下,弹舱开启后使得全机阻力增加60%~110%,Ma=0.8时全机升阻比降低34%。通过在弹舱前缘安装扰流片,对弹舱腔口剪切层施加流动控制,巡航状态下弹舱开启附加阻力最多降低20%,Ma=0.8时全机升阻比提高12.6%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号