首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The scientific rationale of the Solar Orbiter is to provide, at high spatial (35 km pixel size) and temporal resolution, observations of the solar atmosphere and unexplored inner heliosphere. Novel observations will be made in the almost heliosynchronous segments of the orbits at heliocentric distances near 45 R and out of the ecliptic plane at the highest heliographic latitudes of 30° – 38°. The Solar Orbiter will achieve its wide-ranging aims with a suite of sophisticated instruments through an innovative design of the orbit. The first near-Sun interplanetary measurements together with concurrent remote observations of the Sun will permit us to determine and understand, through correlative studies, the characteristics of the solar wind and energetic particles in close linkage with the plasma and radiation conditions in their source regions on the Sun. Over extended periods the Solar Orbiter will deliver the first images of the polar regions and the side of the Sun invisible from the Earth.  相似文献   

2.
There are different methods for finding exoplanets such as radial spectral shifts, astrometrical measurements, transits, timing etc. Gravitational microlensing (including pixel-lensing) is among the most promising techniques with the potentiality of detecting Earth-like planets at distances about a few astronomical units from their host star or near the so-called snow line with a temperature in the range 0–100 °C on a solid surface of an exoplanet. We emphasize the importance of polarization measurements which can help to resolve degeneracies in theoretical models. In particular, the polarization angle could give additional information about the relative position of the lens with respect to the source.  相似文献   

3.
EPONA is an energetic particle detector system incorporating totally depleted silicon surface barrier layer detectors. Active and passive background shielding will be employed and, by applying various techniques, particles of different species, including electrons, protons, alpha particles and pick-up ions of cometary origin may be detected over a wide spectrum of energies extending from the tens of KeV into the MeV range.

The instrument can operate in two modes namely (a) in a cruise phase or storage mode and (b) in a real time mode. During the real time mode, observations at high spatial (octosectoring) and temporal (0.5s) resolution in the cometary environment permit studies to be made of accelerated particles at the bow shock and/or in the tail of the comet. In conjunction with magnetic field measurements on board Giotto, observations of energetic electrons and their anisotropies can determine whether the magnetic field lines in the cometary tail are open or closed. Further, the absorption of low energy solar particles in the cometary atmosphere can be measured and such data would provide an integral value of the pertaining gas and dust distribution. Solar particle background measurements during encounter may also be used to correct the measurements of other spacecraft borne instruments potentially vulnerable to such radiation.

Solar particle flux measurements, obtained during the cruise phase will, when combined with simultaneous observations made by other spacecraft at different heliographic longitudes, provide information concerning solar particle propagation in the corona and in interplanetary space.  相似文献   


4.
The PAMELA experiment aims to measure with great precision the antimatter present in our Galaxy in the form of high energy particles; in the same time it will measure the galactic, solar and trapped components of cosmic rays. The experiment will be housed on board a Russian Resurs-DK1 satellite and launched in the year 2005 to fly a 350–600 km orbit with an inclination of 70.4°. All operations of the instrument – including data storage – are handled by the PAMELA Storage and Control Unit (PSCU), which is divided in a Central Processing Unit (CPU) and a Mass Memory (MM). The CPU of the experiment is based on a ERC-32 architecture (a SPARC v7 implementation) running a real time operating system (RTEMS). The main purpose of the CPU is to handle slow control, acquire and store data on a 2 GB MM. Communications between PAMELA and the satellite are performed via a 1553B bus. Data acquisition from the sub-detectors (Time-of-Flight counter, Magnetic Spectrometer, Electromagnetic Calorimeter, Anticoincidence shield, Neutron Detector, and Bottom scintillator S4) is performed via a 2 MB/s interface. Download from the PAMELA MM towards the satellite main storage unit is handled by a 16 MB/s bus. The daily amount of data transmitted to ground has been evaluated in not more 20 GB. In this work, we describe the CPU of the experiment and the general software scheme.  相似文献   

5.
Imaging interplanetary CMEs at radio frequency from solar polar orbit   总被引:1,自引:0,他引:1  
Coronal mass ejections (CMEs) represent a great concentration of mass and energy input into the lower corona. They have come to be recognized as the major driver of physical conditions change in the Sun–Earth system. Consequently, observations of CMEs are important for understanding and ultimately predicting space weather conditions. This paper discusses a proposed mission, the Solar Polar Orbit Radio Telescope (SPORT) mission, which will observe the propagation of interplanetary CMEs to distances of near 0.35 AU from the Sun. The orbit of SPORT is an elliptical solar polar orbit. The inclination angle between the orbit and ecliptic plane should be about 90°. The main payload on board SPORT will be an imaging radiometer working at the meter wavelength band (radio telescope), which can follow the propagation of interplanetary CMEs. The images that are obtained by the radio telescope embody the brightness temperature of the objectives. Due to the very large size required for the antenna aperture of the radio telescope, we adopt interferometric imaging technology to reduce it. Interferometric imaging technology is based on indirect spatial frequency domain measurements plus Fourier transformation. The SPORT spacecraft will also be equipped with a set of optical and in situ measurement instruments such as a EUV solar telescope, a solar wind ion instrument, an energetic particle detector, a magnetometer, a wave detector and a solar radio burst spectrometer.  相似文献   

6.
7.
The solar wind is a high Reynolds’ number plasma flow of solar origin that permeates the whole heliosphere. It is also the only accessible medium in which to study collisionless magnetohydrodynamic turbulence performing direct measurements. This represents a topic of fundamental importance to both plasma physics and astrophysics. During the past decades, in situ observations on the ecliptic and at high heliographic latitudes have been very valuable to shed some light on the intricate nature of space plasma turbulence. In this brief review, we will mainly describe the evolution experienced by the turbulence as the solar wind expands into the interplanetary space. We will also address implications due to different processes of local generation of turbulence which might be at work on the ecliptic and at high latitude. Moreover, the fact that solar wind fluctuations are not isotropic and poorly single scale-invariant, two of the fundamental hypotheses at the basis of Kolmogorov’s theory (K41), will give us the possibility to discuss also the relevance of intermittency in the study of space plasma turbulence.  相似文献   

8.
The low energy neutral atom imagers on Mars Express and IMAGE have revealed that the neutral atom populations in interplanetary space come from a variety of sources and challenge our current understanding of heliospheric physics. For example, both in cruise phase and at Mars, the neutral particle instrument NPD on Mars Express observed “unexplained neutral beams” unrelated to Mars which appear to be either of heliospheric or solar wind origin. Likewise, the NPI instrument on Mars Express has revealed streams of neutral atoms with different properties than those observed by NPD. Independently, IMAGE/LENA has reported neutral atom observations that may be interpreted as a “secondary stream” having different characteristics and flowing from a higher ecliptic longitude than the nominal upstream direction. Both sets of observations do not appear to fit in easily with the neutral atom environment from 1.0 to 1.57 AU as it is currently understood. In this paper, we examine some highly suggestive similarities in the IMAGE/LENA and Mars Express/ASPERA-3/NPI data to try to determine potential origins for the observed signal.  相似文献   

9.
The remote X-ray fluorescence spectroscopy is a powerful technique to investigate the elemental abundances in the atmosphere-less planetary bodies. The experiment involves measuring spectra of fluorescent X-rays from lunar surface using a low energy X-ray detector onboard an orbiting satellite. Since the flux of fluorescent X-ray lines critically depend on the flux and spectrum of the incident solar X-rays, it is essential to have simultaneous and accurate measurement of X-ray from both Moon and Sun. In the context of Moon, this technique has been employed since early days of space exploration to determine elemental composition of lunar surface. However, so far it has not been possible to exploit it to its full potential due to various reasons. Therefore it is planned to continue the remote X-ray fluorescence spectroscopy experiment on-board Chandrayaan-2 which includes both lunar X-ray observations and solar X-ray observations as two separate payloads. The lunar X-ray observations will be carried out by Chandra Large Area Soft x-ray Spectrometer (CLASS) experiment; whereas the solar X-ray observations will be carried out by a separate payload, Solar X-ray Monitor (XSM). Here we present the overall design of the XSM instrument, the present development status as well as preliminary results of the laboratory model testing. XSM instrument will have two packages namely – XSM sensor package and XSM electronics package. XSM will accurately measure spectrum of Solar X-rays in the energy range of 1–15 keV with energy resolution ∼200 eV @ 5.9 keV. This will be achieved by using state-of-the-art Silicon Drift Detector (SDD), which has a unique capability of maintaining high energy resolution at very high incident count rate expected from Solar X-rays. XSM onboard Chandrayaan-2 will be the first experiment to use such detector for Solar X-ray monitoring.  相似文献   

10.
The SPOT 4 VEGETATION system is a joint program of the European Commission, France, Sweden, Belgium and Italy, to be launched in 1997. It will provide global and frequent measurements adapted to biosphere studies, especially for monitoring of the biophysical processes of the vegetation canopies. Information derived from its measurements will allow operational and long term studies related either to the production of agricultural areas or to the functioning of ecosystems, to their interaction with the atmosphere and climatic changes. The design of the entire system, from the instrument to the ground segment, was aimed at providing direct capability for multitemporal analysis of surface reflectance measurements at medium spatial resolution as well as for association with high spatial resolution data sets available from the SPOT High Resolution instrument or from other systems. Nature and quality of products delivered by the system were especially tailored taking into account the development of research done on previous systems and the needs for characterizing the temporal dynamic aspects of biosphere processes and relating regional or ecosystems' parameters to local parameters less affected by spatial heterogeneity.  相似文献   

11.
For more than a decade, ionospheric research over South Africa has been carried out using data from ionosondes geographically located at Madimbo (28.38°S, 30.88°E), Grahamstown (33.32°S, 26.50°E), and Louisvale (28.51°S, 21.24°E). The objective has been modelling the bottomside ionospheric characteristics using neural networks. The use of Global Navigation Satellite System (GNSS) data is described as a new technique to monitor the dynamics and variations of the ionosphere over South Africa, with possible future application in high frequency radio communication. For this task, the University of New Brunswick Ionospheric Modelling Technique (UNB-IMT) was applied to compute midday (10:00 UT) GNSS-derived total electron content (GTEC). GTEC values were computed using GNSS data for stations located near ionosondes for the years 2002 and 2005 near solar maximum and minimum, respectively. The GTEC was compared with the midday ionosonde-derived TEC (ITEC) measurements to validate the UNB-IMT results. It was found that the variation trends of GTEC and ITEC over all stations are in good agreement and show a pronounced seasonal variation for the period near solar maximum, with maximum values (∼80 TECU) around autumn and spring equinoxes, and minimum values (∼22 TECU) around winter and summer. Furthermore, the residual ΔTEC = GTEC − ITEC was computed. It was evident that ΔTEC, which is believed to correspond to plasmaspheric electron content, showed a pronounced seasonal variation with maximum values (∼20 TECU) around equinoxes and minimum (∼5 TECU) around winter near solar maximum. The equivalent ionospheric and total slab thicknesses were also computed and comprehensively discussed. The results verified the use of UNB-IMT as one of the tools for future ionospheric TEC research over South Africa.  相似文献   

12.
Water vapour concentration is one of the most important, yet one of the least known quantities of the mesosphere. Knowledge of water vapour concentration is the key to understanding many mesospheric processes, including the one that is primary focus of our investigation, Polar Mesospheric Clouds (PMC). The processes of formation and occurrence parameters of PMC constitute an interesting problem in their own right, but recent evidence had been provided which suggests that PMC are a critical indicator of climate change. In this context the feasibility of a low cost method of water vapour measurements using an instrument carried aloft by a sounding rocket has been examined and some of the results discussed. It is proposed to measure the strength of the 936nm water absorption line in a solar occultation configuration employing a CCD detector. This leads to the design of a small, low cost and low-mass instrument, which can be flown on a small rocket, of the type of the Orbital Sciences Corporation Viper 5. Alternatively the instrument can be flown as a “passenger” on larger rocket carrying other experiments. In either case flight costs are relatively low. Some performance simulations are presented showing that the instrument we have designed will be sufficiently sensitive to measure water vapor in concentrations that are expected at the summer mesopause, about 85 km height. Sufficient payload design work was carried out showing that the structural, thermal and electrical requirements for a flight on the Viper 5 rocket can be met and thus making the experiment feasible for a flight.  相似文献   

13.
As one payload of a Chinese seismic satellite program, an ion drift meter (IDM) will measure drift velocity of thermal ions at an altitude of 500 km. Previous works have shown that such instruments use biased grids to create nonuniform potential in the grid planes, which brings systematic errors to the inferred parameters. A commercial finite element analysis software is used to simulate this instrument in the exact size. The error sources from thermal velocity, nonuniform transparency of real grids and potential depression in the grid planes are explained. The simulation results show that the arrival angle and drift velocity will be underestimated in all the conditions and the maximal error will be about −0.87° and −121 m/s, respectively. Furthermore, the relative error of the inferred arrival angle and the drift velocity will be inversely correlated with the arrival angle because of the lensing effect of the potential depression. This simulation provides a quantificational method of evaluating and correcting the data during in situ operation.  相似文献   

14.
Solar Ring (SOR) is a proposed space science mission to monitor and study the Sun and inner heliosphere from a full 360° perspective in the ecliptic plane. It will deploy-three 120°-separated spacecraft on the 1-AU orbit. The first spacecraft, S1, locates 30° upstream of the Earth, the second, S2, 90° downstream, and the third, S3, completes the configuration. This design with necessary science instruments, e.g., the Doppler-velocity and vector magnetic field imager, wide-angle coronagraph, and in-situ instruments, will allow us to establish many unprecedented capabilities: (1) provide simultaneous Doppler-velocity observations of the whole solar surface to understand the deep interior, (2) provide vector magnetograms of the whole photosphere — the inner boundary of the solar atmosphere and heliosphere, (3) provide the information of the whole lifetime evolution of solar featured structures, and (4) provide the whole view of solar transients and space weather in the inner heliosphere. With these capabilities, Solar Ring mission aims to address outstanding questions about the origin of solar cycle, the origin of solar eruptions and the origin of extreme space weather events. The successful accomplishment of the mission will construct a panorama of the Sun and inner-heliosphere, and therefore advance our understanding of the star and the space environment that holds our life.  相似文献   

15.
The analysis of interplanetary dust shows that the majority of particles in out-of-ecliptic regions comes from comets and also that near solar dust, in the ecliptic regions, results most probably largely from comets. The intense radiation flux in the solar vicinity is expected to cause strong modifications in the material composition and surface structure of interplanetary dust particles and hence the analysis of near solar dust provides interesting insights into the evolution of meteoritic, especially cometary materials. Because of the lack of in-situ measurements our present knowledge concerning these processes derives from remote sensing, i.e. observations of the solar F-corona. In particular these are observations of albedo, polarization and colour temperature given in terms of average particle properties. For example the analysis of near infra-red F-corona data points to the existence of a strong component of irregularly structured silicate particles, most probably of cometary origin. The data may indicate a subsequent sublimation of different particles or different constituents of the particles. Here we compare particle properties derived from F-corona observations with model calculations of single particle properties and discuss perspectives of future analysis of cometary dust in the interplanetary cloud.  相似文献   

16.
The Cosmic-Ray Energetics And Mass balloon-borne experiment has been launched twice in Antarctica, first in December 2004 and again in December 2005. It circumnavigated the South Pole three times during the first flight, which set a flight duration record of 42 days. A cumulative duration of 70 days within 13 months was achieved when the second flight completed 28 days during two circumnavigations of the Pole on 13 January 2006. Both the science instrument and support systems functioned extremely well, and a total 117 GB of data including 67 million science events were collected during these two flights. Preliminary analysis indicates that the data extend well above 100 TeV and follow reasonable power laws. The payload recovered from the first flight has been refurbished for the third flight in 2007, whereas the payload from the second flight is being refurbished to be ready for the fourth flight in 2008. Each flight will extend the reach of precise cosmic-ray composition measurements to energies not previously possible.  相似文献   

17.
Dynamic processes in the interplanetary space have been investigated using time variations in time parameters of the cosmic-ray rigidity spectrum. Change of heliosphere electromagnetic characteristics has been found out to precede sporadic phenomena on the Sun. In particular, it is shown that sporadic phenomena are followed by generation of local polarization electric fields, decrease of the magnetic-field strength in small-scale heliospheric structures, and increase of the potential difference between the pole and the plane of the ecliptic. These features allow prediction of solar proton events in advance (from several hours to several tens of hours) with a high degree of confirmation.  相似文献   

18.
The white-light corona calibrated data with processing level L1 from the LASCO-C2/SOHO instrument, and data from the Wind spacecraft with one-hour and one-minute time resolution on quasi-stationary slow (v between 300-450 km/s at the Earth's orbit) the Solar Wind (SW) parameters in the absence of sporadic SW streams are examined. Within distances from the Sun's center less than R in the range of 20-30 Rs, (Rs, the solar radius), slow wind is known as the streamer belt, and at larger distances it is called the He-liospheric Plasma Sheet (HPS). It is shown that the streamer belt comprises a sequence of pairs of rays. In general, ray brightnesses in each pair can differ, and the magnetic field is oppositely directed in them. The neutral line of the radial magnetic field of the Sun runs along the belt between the rays of each of the pairs. The area in which the streamer belt intersects the ecliptic plane and which lies at the central meridian, will be recorded at the earth's orbit with a time delay of 5-6 days, in the form of one or several peaks with Nmax> 10cm-3. Furthermore, the simplest density profile of the portion of the HCS has the form of two peaks of a different or identical amplitude . The such a profile is observed in cases where the angle of intersection of the streamer belt with the ecliptic plane near the Sun is sufficiently large, i.e. close to 90°. The two-ray structure of the cross-section of the streamer-belt moves from the Sun to the Earth, it retains not only the angular size of the peaks but also the relative density variations, and the position of the neutral line (sector boundary) in between. At the Earth's orbit the ray structure of the streamer belt provides the source for sharp (i.e. with steep fronts of a duration of a few minutes or shorter) solar wind plasma density peaks (of a duration of several hours) with maximum values Nmax> 10cm-3.  相似文献   

19.
Since 1978 a number of satellite borne sensors have been used to measure the composition of the earth's atmosphere. These include the LIMS and SAMS instruments on the Nimbus 7 satellite (launched in October 1978), the SAGE instrument on the AEM2 satellite (launched in february 1979) and various instruments on the SME spacecraft (launched October 1981). For many species, these have provided the first abundance measurements with high spatial and temporal resolution and with global coverage. In this paper the composition measurements that have become available from these programs will be reviewed. The paper will then describe some recent studies that have made use of the new data. As it is the exclusive subject of another invited paper, ozone will not be discussed in in any detail.  相似文献   

20.
UVSTAR is an EUV spectral imager intended as a facility instrument devoted to solar system astronomy and to astronomy. It covers the wavelength range of 500 to 1250 Å, with sufficient spectral resolution to separate atomic emission lines and to form spectrally resolved images of extended plasma sources. Targets include the Io plasma torus at Jupiter, hot stars, planetary nebulae and extragalactic sources. UVSTAR will make useful measurements of emissions from the Earth's atmosphere as well. UVSTAR consists of a pair of telescopes and concave-grating spectrographs that cover the overlapping spectral ranges of 500–900 Å and 850–1250 Å. The telescopes use two 30 cm diameter off-axis paraboloids having a focal length of 1.4 m. An image of the target is formed at the entrance slits of two concave grating spectrographs. The gratings provide dispersion and re-image the slits at the detectors, intensified CCDs. The readout format of the detectors can be chosen by computer, and three slit widths are selectable to adapt the instrument to specific tasks. The spectrograph package has internal gimbals which allow rotation of ±3° about each of two axes. Dedicated finding and tracking telescopes will acquire and track the target after rough pointing is achieved by orienting the Orbiter. Responsibilities for the implementation and utilization of UVSTAR are shared by groups the U.S. and Italy. UVSTAR is scheduled for flight in early 1994.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号