首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
采用差示扫描量热法(DSC)和表观活化能变化率,研究了高能硼氢燃烧剂(十氢十硼酸双四乙基铵,BHN)与缩水甘油叠氮聚醚(GAP)、黑索今(RDX)、奥克托金(HMX)、3-硝基-1,2,4-3-己基铅(NTO-Pb)、六硝基六氮杂异伍兹烷(CL-20)、铝粉(Al,12.18μm)、镁粉(Mg,200~325目)、3,4-二硝基呋咱基氧化呋咱(DNTF)和N-脒基脲二硝酰胺盐(GUDN)等含能组分的相容性;同时,还研究了BHN与聚对苯二甲酸乙二醇酯(PET,M=6 000)、聚乙二醇(PEG,M=10 000)、二异氰酸酯(N-100)、端羟基聚丁二烯(HTPB)、己二酸铜(AD-Cu)、2,4-二羟基苯甲酸铜(β-Cu)、邻苯二甲酸铅(φ-Pb)、炭黑(CB)、三氧化二铝(A12O3)、l,3-二甲基-1,3-二苯基脲(C2)、癸二酸二异辛酯(DOS)和高氯酸钾(KP)等惰性材料的相容性。研究结果表明,BHN与NTO-Pb、CL-20、A1、Mg、PET、PEG、N-100、HTPB、CB、Al2O3、C2、DOS和KP相容性较好,与GAP和HMX轻微敏感;AD-Cu、β-Cu和φ-Pb敏感,而与RDX、DNTF和GUDN不相容。由此可见,BHN与固体推进剂的主要组分相容性良好,可在HTPB/AP/Al体系的复合固体推进剂中应用。  相似文献   

2.
构建了环氧乙烷-四氢呋喃共聚醚(PET)及常用固化剂多官能度异氰酸酯(N-100)、甲苯二异氰酸(TDI)和异佛尔酮二异氰酸(IPDI)的分子模型及无定形结构,采用分子动力学方法计算了这4种组分的溶度参数,并对组分纯物质间及混合体系组分间的径向分布函数进行了分析,采用共混方法计算了不同固化剂分别与PET组成的共混体系的共混能,得到了不同共混体系的共混结合能分布图。分析结果得到一致结论,PET与固化剂相容性优劣次序为PET/N-100PET/IPDIPET/TDI。结论与目前工程应用中普遍采取N-100作为NEPE推进剂的固化剂这一实际相吻合,验证了采用分子模拟方法从相容性能选择固化剂的可行性,该方法可预测不同组分的相容性,为固体推进剂的配方设计提供参考。  相似文献   

3.
环氧化端羟基聚丁二烯/H12 MDI型聚氨酯固化工艺的研究   总被引:1,自引:0,他引:1  
采用环氧化端羟基聚丁二烯(EHTPB)与H12MDI固化交联形成聚氨酯弹性体,利用DSC外推法研究了EHTPB/H12MDI型聚氨酯固化的最佳反应温度,再通过测量固化产物的力学性能研究了其他最佳固化工艺参数,包括反应时间、固化剂H12MDI用量、EHTPB环氧值以及扩链剂BDO用量,并在相同条件下对端羟基聚丁二烯(HTPB)/H12MDI和EHTPB/H12MDI固化产物的力学性能进行了比较。结果表明,EHTPB/H12MDI固化产物具备更好的力学性能,并得到了EHTPB/H12MDI型聚氨酯弹性体的最佳固化工艺条件。  相似文献   

4.
以ATP为粘合剂、N-100为固化剂制备出ATP弹性体,并进行了性能表征.采用DSC/TG-FTIR-MS联用技术、高压DSC技术和热裂解快速扫描傅里叶变换红外技术(RSC/FITR),研究了叠氮类粘合剂ATP弹性体热分解过程,获得了ATP弹性体的热反应动力学参数,并提出了可能的分解机理.结果表明,ATP弹性体的热分解...  相似文献   

5.
以端羟基聚丁二烯(HTPB)为引发剂,三氟化硼乙醚络合物为催化剂,环氧丙烷为促开环剂,通过四氢呋喃的阳离子开环聚合反应,制备出聚四氢呋喃-聚丁二烯-聚四氢呋喃三嵌段共聚物(PTHF-PB-PTHF)。采用红外光谱、核磁共振氢谱及碳谱、凝胶渗透色谱-激光光散射联用技术,对目标化合物的结构进行了表征。采用相对分子质量为8 066 g/mol的PTHF-PB-PTHF与甲苯二异氰酸酯反应制备了交联弹性体,应力-应变试验显示,在相同交联密度下,PTHF-PB-PTHF交联弹性体的拉伸强度及断裂伸长率较纯HTPB交联弹性体分别提高了16%及19%。动态热机械性能分析表明,PTHF-PBPTHF交联弹性体具有优异的粘弹性能,其玻璃化转变温度为-55.99℃,低于HTPB交联弹性体。  相似文献   

6.
HTPB/TDI衬层与NEPE推进剂的界面反应机理   总被引:1,自引:0,他引:1  
采用富立叶变换红外光谱(FTIR)和全反射红外光谱(FTIR/ATR),研究了半固化的HTPB/TDI衬层表面的活性基团以及不同的—NCO基团与不同羟基的反应速率。结果表明,半固化的HTPB/TDI衬层表面含有大量的—NCO基团;HTPB/TDI衬层和NEPE推进剂粘合剂相的—NCO基与—OH的交叉反应速度较NEPE推进剂的固化反应速度快得多。HTPB/TDI衬层与NEPE推进剂界面的化学反应机理是粘合剂相中—OH基和—NCO基的交叉反应,其中衬层中TDI分子的—NCO基与PEG分子的—OH基的反应速度稍快于NEPE推进剂中N100分子的—NCO基与HTPB分子的—OH基的反应;在界面区域,HTPB/TDI衬层与NEPE推进剂通过氨基甲酸酯键形成化学粘接。  相似文献   

7.
通过二正丁胺滴定法,分别对端羟基聚醚(PEG)/苯异氰酸酯(PI)、键合剂(NPBA)/PI、安定剂(MNA)/PI体系进行了反应动力学研究,得到了相应体系在不同温度下的反应速率常数及活化能,并分析了反应速率的影响因素及3种组分对固化体系网络结构的影响。结果表明,PEG/PI、键合剂/PI、安定剂/PI体系的固化反应都为二级反应,活化能分别为24.96、43.27、9.1 kJ/mol;反应速率的影响因素可能是溶剂和各组分的结构;3种组分对网络结构的影响可能是聚醚/N-100形成体系的基本网络结构,键合剂提高界面过渡层的交联密度,安定剂/N-100降低体系的交联密度。  相似文献   

8.
基于硼氢盐化合物具有高燃速、高燃烧热值等优点,探索了两种十氢十硼酸金属盐化合物(BHM)在富燃料推进剂中应用前景。采用DCAT 21型动态接触角/表面张力仪测量了BHM、AP、Mg、团聚硼、HTPB的接触角,计算了固体组分与HTPB之间的粘合功W和铺展系数S,结果显示几种固体组分与HTPB粘合剂相互作用大小次序为AP/HTPBBH-2/HTPB团聚硼/HTPBMg/HTPBBH-1/HTPB,且SHTPB/BH-1较小,因为BH-1不能充分浸润于HTPB粘合剂,界面间产生排斥作用,导致含硼氢盐BH-1推进剂内部出现裂纹。还研究了含硼氢盐BH-2富燃料推进剂的流变性能、能量性能和燃烧性能。结果表明,用硼氢盐BH-2替代团聚硼粉,能降低推进剂药浆的表观粘度和屈服值,提高推进剂实测热值,其中,BH-2含量30%的B-2配方,推进剂药浆的屈服值为44.5 Pa,表观粘度为188 Pa·s,燃烧效率达到了93.2%。发现硼氢盐使推进剂燃速降低,且产生大量的燃烧残渣,这与燃烧产物中凝聚相碳(C)的大幅增加有关。依据硼氢盐分解和燃烧特点,认为其适应于燃料冲压发动机。  相似文献   

9.
用分子动力学( MD)方法,对( PEG/NG/BTTN)/NPBA/HMX/AP/PEG/N-100//HTPB/TDI复杂的推进剂/衬层模型体系进行295 K-NVT模拟研究,展示了组分分子的浓度分布和迁移状况,发现HMX和NPBA分子有向界面层迁移趋势,而AP则呈平均分布态势。以RDX等量取代HMX后所得新配方的MD模拟研究表明,前者拉伸模量( E)、体模量( K)和剪切模量( G)、柯西压( C12-C44)和K/G值均有明显下降,表明新配方的刚性、强度和延展性均有下降;新配方中引发键(N—NO2)最大键长(1.528?)明显大于原配方中相应值(1.503?),预示新配方感度增大、安全性将下降;比较RDX、HMX与其他组分之间的结合能,前者小于后者,预示新配方的相容性较差。  相似文献   

10.
为了减少无定形硼粉表面的B2O3、H3BO3等杂质,分别以甘露醇、TP、TA和NaOH溶液为原料,对无定形硼粉进行了表面改性研究,并对其性能进行了测试表征。结果表明,硼粉经不同化学物质的表面改性后,硼粉表面的B元素含量提高;B/H2O悬浊液的pH值增大;随着B/HTPB悬浮液混合时间的增加,B-1/HTPB悬浮液的表观粘度和屈服值增加较快,B-3和B-4与HTPB混合的悬浮液粘度增加缓慢,而B-2/HTPB悬浮液在剪切速率大于1.0 s-1后几乎不变,且表面改性硼粉的粒度分布均匀,粒径基本在d50=4.653μm左右。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号